0000000000358504

AUTHOR

J. Wenzl

showing 2 related works from this author

Quantum-state-selective decay spectroscopy of Ra213

2017

An experimental scheme combining the mass resolving power of a Penning trap with contemporary decay spectroscopy has been established at GSI Darmstadt. The Universal Linear Accelerator (UNILAC) at GSI Darmstadt provided a $^{48}\mathrm{Ca}$ beam impinging on a thin $^{170}\mathrm{Er}$ target foil. Subsequent to velocity filtering of reaction products in the Separator for Heavy Ion reaction Products (SHIP), the nuclear ground state of the $5n$ evaporation channel $^{213}\mathrm{Ra}$ was mass-selected in SHIPTRAP, and the $^{213}\mathrm{Ra}$ ions were finally transferred into an array of silicon strip detectors surrounded by large composite germanium detectors. Based on comprehensive geant4 s…

PhysicsPhysics::Instrumentation and Detectors010308 nuclear & particles physicsNuclear shell modelPenning trap01 natural sciencesNuclear physicsUniversal linear accelerator0103 physical sciencesGamma spectroscopyAlpha decayAtomic physicsNuclear Experiment010306 general physicsSpectroscopyGround stateRadioactive decayPhysical Review C
researchProduct

Quantum-state-selective decay spectroscopy of 213Ra

2017

An experimental scheme combining the mass resolving power of a Penning trap with contemporary decay spectroscopy has been established at GSI Darmstadt. The Universal Linear Accelerator (UNILAC) at GSI Darmstadt provided a 48Ca beam impinging on a thin 170Er target foil. Subsequent to velocity filtering of reaction products in the Separator for Heavy Ion reaction Products (SHIP), the nuclear ground state of the 5n evaporation channel 213Ra was mass-selected in SHIPTRAP, and the 213Ra ions were finally transferred into an array of silicon strip detectors surrounded by large composite germanium detectors. Based on comprehensive geant4 simulations and supported by theoretical calculations, the …

gamma-ray spectroscopynuclear shell modelalpha decayPhysics::Instrumentation and DetectorsPenning trapSubatomic Physicsnuclear structureshell modelnuclear decaysNilsson-Strutinsky calculationsNuclear Experiment
researchProduct