0000000000358631
AUTHOR
Clément Strutynski
Impact of optical and structural aging in As_2S_3 microstructured optical fibers on mid-infrared supercontinuum generation
We analyze optical and structural aging in As2S3 microstructured optical fibers (MOFs) that may have an impact on mid-infrared supercontinuum generation. A strong alteration of optical transparency at the fundamental OH absorption peak is measured for high-purity As2S3 MOF stored in atmospheric conditions. The surface evolution and inherent deviation of corresponding chemical composition confirm that the optical and chemical properties of MOFs degrade upon exposure to ambient conditions because of counteractive surface process. This phenomenon substantially reduces the optical quality of the MOFs and therefore restrains the spectral expansion of generated supercontinuum. This aging process …
TeO2-ZnO-La2O3 tellurite glass system investigation for mid-infrared robust optical fibers manufacturing
Abstract TeO2-ZnO-La2O3 (TZL) ternary glasses were investigated in order to manufacture step-index optical fibers with low optical losses in the near- and mid-infrared ranges and superior mechanical properties. To identify appropriate TZL glass compositions for optical fibers manufacturing, the whole vitreous domain of the ternary diagram was explored by characterizing bulk samples from thermal and optical point of view. Investigations were focused on understanding how the refractive index evolves as a function of the composition. For this, several parameters were analyzed such as density, molar volume, oxygen packing density, molar refractivity, polarizability and optical basicity. Finally…
Tellurites fibers for infrared supercontinuum sources : opto-geometric profiles and extrinsic absorptions management
This PhD thesis work focuses on the synthesis and purification of vitreous materials used for the development of waveguides with varied profiles, dedicated to supercontinuum (SC) generation between 1 and 5 μm.Concerning the purification of tellurite glasses, several leads were followed, but best results are obtained for the purification of the TeO2-ZnO-Na2O glassy system by the means of zinc fluoride. Attenuation measurements performed on several meter-long single-index fiber samples reveal the nearly complete elimination of water-related absorptions between 3 and 4 μm (OH ions concentration lower than 1 ppm mass.). Such water-purified glasses were firstly dedicated to microstructured optic…
3.5-μm bandwidth mid-infrared supercontinuum generation in a 2-cm long suspended-core chalcogenide fiber
A supercontinuum source extending from 0.6 to 4.1 µm has been successfully generated in a 2-cm long As2S3 chalcogenide suspended-core fiber by means of a nJ-level 200-fs pumping at 2.5 µm.
Atmospheric aging and surface degradation in As2S3 fibers in relation with suspended-core profile
Abstract Microstructured optical fibers (MOF) can be seen as next generation fiber of significance in advancing the compact optics because of its excellent compatibility in integrated optics. However, the degradation of their physicochemical properties limits their efficiency and lifetime. Atmospheric moisture is responsible for the degradation of amorphous systems especially chalcogenide glasses. In the light of previously reported studies, in order to clarify the aging process continuously evolving in sulfide microstructured optical fiber over time, a detailed investigation of this phenomenon has been conducted. The time-dependent transmission and glass chemical deterioration have been st…
Enhanced supercontinuum generation in tapered tellurite suspended core fiber
Abstract We demonstrate 400-THz (0.6–3.3 µm) bandwidth infrared supercontinuum generation in a 10 cm-long tapered tellurite suspended core fiber pumped by nJ-level 200-fs pulses from an optical parametric oscillator. The increased nonlinearity and dispersion engineering extended by the moderate reduction of the fiber core size are exploited for supercontinuum optimization on both frequency edges (i.e., 155-THz overall gain), while keeping efficient power coupling into the untapered fiber input. The remaining limitation of supercontinuum bandwidth is related to the presence of the high absorption beyond 3 µm whereas spectral broadening is expected to fully cover the glass transmission window…
Filamentation-induced spectral broadening and pulse shortening of infrared pulses in Tellurite glass
Abstract Filamentation of infrared femtosecond pulses in Tellurite glass is reported, leading to the generation of a supercontinuum generation spanning from the visible up to 4 μm. The angular distribution of the supercontinuum shows clear evidence of conical waves generation, in particular, in the visible region. Moreover, taking advantage of the spatio-temporal self-focusing effect occurring in the Tellurite glass, a twofold pulse shortening is demonstrated. Tellurite glass appears as a very convenient, versatile and promising medium for femtosecond nonlinear optics in the infrared region.
Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers
An As2S3 fiber-based supercontinuum source that covers 3500 nm, extending from near visible to the midinfrared, is successfully reported by using a 200-fs-pulsed pump with nJ-level energy at 2.5 μm. The main features of our fiber-based source are two-fold. On the one hand, a low-loss As2S3 microstructured optical fiber has been fabricated, with typical attenuation below 2 dB/m in the 1-4 μm wavelength range. On the other hand, a 20-mm-long microstructured fiber sample is sufficient to enable a spectral broadening, spreading from 0.6 to 4.1 μm in a 40 dB dynamic range.
Investigation of the Na2O/Ag2O ratio on the synthesis conditions and properties of the 80TeO2–10ZnO–[(10−x)Na2O–xAg2O] glasses
International audience; Properties of the tellurite glasses 80TeO2–10ZnO–[(10−x)Na2O–xAg2O] are investigated as a function of the substitution ratio x between Na2O and Ag2O. One observe that the variation of glass transition temperature decreases monotonously with x and that surface crystallization mechanism is favored. The assignment of the Raman bands and their relation with the underlying glass structure is discussed. While both Na2O and Ag2O oxides act as glass network modifiers, their progressive equimolar substitution does not lead to a meaningful evolution in the structure of the TZ[Na10-xAgx] glass. The refractive index and the cut-off wavelength are found to increase with x. The co…
Optical aging behaviour naturally induced on As_2S_3 microstructured optical fibres
The efficiency and the stability of As2S3 microstructured optical fibres (MOFs) are limited by the shift of their optical properties that occurs over time due to a naturally induced aging process. Such sensitivity becomes more crucial for long optical path. Among the variety of fibre designs, the MOFs are developed for promising photonics applications such as supercontinuum generation for example. In the present work, we carried out an extensive aging study on As2S3 chalcogenide MOFs in ambient atmosphere. The evolution of the fibre transmission spectrum has been studied with regards to exposure time. The analysis of the transmission line profile was performed in terms of different spectral…