One-step formation of nanostructures on silicon surfaces using pure hydrogen-radical-initiated reactions
One-step formation of silicon nanowires, sheets, and texture surface on a silicon substrate has been achieved using hydrogen-radical etching reactions. Metallic tungsten and for comparison purposes a tungsten hot wire, were used as catalysts for the hydrogen-molecular cracking. It was shown that a variety of surface structures on silicon such as inverted pyramid texture, V-groove texture, dense silicon nanowire growth over texture, and nanosheet structure can be obtained by controlling the process conditions. The obtained results suggested that the formation of nanotungsten silicide particle is an essential prerequisite to obtain these structures. The particles work as an etching mask again…