0000000000358942

AUTHOR

Loren P. Albert

showing 3 related works from this author

Beyond APAR and NPQ: Factors Coupling and Decoupling SIF and GPP Across Scales

2021

The connection between solar-induced fluorescence (SIF) and vegetation gross primary productivity is being widely investigated across spatial, temporal, and biological scales, including: a) studies at the leaf [1], [2], plant canopy [2]–[4] or satellite pixel scale [5], [6], b) temporally with studies spanning from diurnal [7] to seasonal scales [1], [3], [5], and b) biologically with studies covering various plant functional types (PFTs), e.g., crops [4], [7], deciduous [8] or evergreen forests [1], [3], in response to different sources of stress.

010504 meteorology & atmospheric sciences0211 other engineering and technologies02 engineering and technologyVegetationDecoupling (cosmology)15. Life on landEvergreenAtmospheric sciences01 natural sciencesGross primary productivityDeciduousPlant canopy021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematics2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS
researchProduct

Stray light characterization in a high-resolution imaging spectrometer designed for solar-induced fluorescence

2019

New commercial-off-the-shelf imaging spectrometers promise the combination of high spatial and spectral resolution needed to retrieve solar induced fluorescence (SIF). Imaging at multiple wavelengths for individual plants and even individual leaves from low-altitude airborne or ground-based platforms has applications in agriculture and carbon-cycle science. Data from these instruments could provide insight into the status of the photosynthetic apparatus at scales of space and time not observable with tools based on gas exchange, and could support the calibration and validation activities of current and forthcoming space missions to quantify SIF. High-spectral resolution enables SIF retrieva…

Physicsmedicine.medical_specialtySpectrometerbusiness.industryStray lightOrders of magnitude (temperature)Astrophysics::Instrumentation and Methods for AstrophysicsImaging spectrometerLaserSpectral imagingFraunhofer lineslaw.inventionsymbols.namesakeOpticslawmedicinesymbolsSpectral resolutionbusinessAlgorithms, Technologies, and Applications for Multispectral and Hyperspectral Imagery XXV
researchProduct

Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science

2021

Remote sensing methods enable detection of solar-induced chlorophyll a fluorescence. However, to unleash the full potential of this signal, intensive cross-disciplinary work is required to harmonize biophysical and ecophysiological studies. For decades, the dynamic nature of chlorophyll a fluorescence (ChlaF) has provided insight into the biophysics and ecophysiology of the light reactions of photosynthesis from the subcellular to leaf scales. Recent advances in remote sensing methods enable detection of ChlaF induced by sunlight across a range of larger scales, from using instruments mounted on towers above plant canopies to Earth-orbiting satellites. This signal is referred to as solar-in…

0106 biological sciencesklorofylliChlorophyll a010504 meteorology & atmospheric sciencesEarth scienceEcology (disciplines)Plant Scienceekofysiologia01 natural sciencesFluorescencebiofysiikkayhteyttäminenchemistry.chemical_compoundLEAFLEAVESWATERPhotosynthesisCO2 ASSIMILATIONSCOTS PINE[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environmentMolecular Biology0105 earth and related environmental sciences[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereChlorophyll ASUN-INDUCED FLUORESCENCEfluoresenssiBiogeochemistrykasvillisuus15. Life on land11831 Plant biologyReflectivityREFLECTANCEPlant LeavesEarth system scienceddc:580RESOLUTIONchemistryPHOTOSYSTEM-I13. Climate actionRemote Sensing TechnologyEarth SciencessatelliittikuvausEnvironmental sciencekaukokartoitus010606 plant biology & botanyNature Plants
researchProduct