0000000000359749

AUTHOR

Hamid Manzoor

showing 4 related works from this author

Calcium signatures and signaling in cytosol and organelles of tobacco cells induced by plant defense elicitors

2011

Calcium signatures induced by two elicitors of plant defense reactions, namely cryptogein and oligogalacturonides, were monitored at the subcellular level, using apoaequorin-transformed Nicotiana tabacum var Xanthi cells, in which the apoaequorin calcium sensor was targeted either to cytosol, mitochondria or chloroplasts. Our study showed that both elicitors induced specific Ca2+ signatures in each compartment, with the most striking difference relying on duration. Common properties also emerged from the analysis of Ca2+ signatures: both elicitors induced a biphasic cytosolic [Ca2+] elevation together with a single mitochondrial [Ca2+] elevation concomitant with the first cytosolic [Ca2+] p…

ChlorophyllChloroplastsTime FactorsPhysiology[SDV]Life Sciences [q-bio]Nicotiana tabacumAequorinMitochondrionMITOCHONDRIALAntiportersCA2+CytosolPlant defenseINTACT CHLOROPLASTSCation Transport ProteinsCalcium signalingRECOMBINANT AEQUORINDEATHfood and beveragesARABIDOPSISOligogalacturonidesMitochondriaChloroplastBiochemistry[SDE]Environmental SciencesCryptogeinPhytophthorachemistry.chemical_elementCalciumBiologyChloroplastFluorescenceFungal ProteinsPHOTOSYSTEM-IIPlant CellsTobaccoOrganelle[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyCalcium SignalingMolecular BiologyHYPERSENSITIVE RESPONSENITRIC-OXIDECell MembraneCell Biologybiology.organism_classificationSALICYLIC-ACIDOxygenCytosolchemistryBiophysicsbiology.proteinCalciumCell Calcium
researchProduct

S-nitrosylation: An emerging post-translational protein modification in plants

2011

International audience; Increasing evidences support the assumption that nitric oxide (NO) acts as a physiological mediator in plants. Understanding its pleiotropic effects requires a deep analysis of the molecular mechanisms underlying its mode of action. In the recent years, efforts have been made in the identification of plant proteins modified by NO at the post-translational level, notably by S-nitrosylation. This reversible process involves the formation of a covalent bond between NO and reactive cysteine residues. This research has now born fruits and numerous proteins regulated by S-nitrosylation have been identified and characterized. This review describes the basic principle of S-n…

0106 biological sciencesPlant ScienceBiology01 natural sciences03 medical and health sciencesS-nitrosothiolMediator[ SDV.SA.AGRO ] Life Sciences [q-bio]/Agricultural sciences/AgronomyGenetics[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyMode of action030304 developmental biologyPlant Proteins0303 health sciencesPost-translational protein modificationsNitric oxideGeneral MedicineS-NitrosylationPlantPlantsS-nitrosylation[SDV.BV.AP]Life Sciences [q-bio]/Vegetal Biology/Plant breedingBiochemistryCovalent bondIdentification (biology)Post-translational protein modificationAgronomy and Crop ScienceProtein Processing Post-TranslationalFunction (biology)010606 plant biology & botanyCysteine
researchProduct

Involvement of the glutamate receptor AtGLR3.3 in plant defense signaling and resistance toHyaloperonospora arabidopsidis

2013

Like their animal counterparts, plant glutamate receptor-like (GLR) homologs are intimately associated with Ca(2+) influx through plasma membrane and participate in various physiological processes. In pathogen-associated molecular patterns (PAMP)-/elicitor-mediated resistance, Ca(2+) fluxes are necessary for activating downstream signaling events related to plant defense. In this study, oligogalacturonides (OGs), which are endogenous elicitors derived from cell wall degradation, were used to investigate the role of Arabidopsis GLRs in defense signaling. Pharmacological investigations indicated that GLRs are partly involved in free cytosolic [Ca(2+)] ([Ca(2+)]cyt) variations, nitric oxide (N…

0106 biological sciencesArabidopsis thaliana[SDV]Life Sciences [q-bio]ArabidopsisOligosaccharidesPlant Science01 natural sciencesCALCIUM SIGNATURESchemistry.chemical_compoundGene Expression Regulation PlantSYSTEMIC ACQUIRED-RESISTANCEArabidopsisPlant defense against herbivoryArabidopsis thalianaPlant ImmunityGENE-EXPRESSIONCalcium signaling0303 health sciencesIMMUNE-RESPONSESTOBACCO CELLSfood and beveragesCYTOSOLIC CALCIUMElicitorOomycetesReceptors GlutamateBiochemistryHost-Pathogen Interactions[SDE]Environmental SciencesoligogalacturonidesSignal transductionSignal Transductionglutamate receptorHyaloperonospora arabidopsidisBiologyNitric Oxidecalcium signaling03 medical and health sciencesplant defenseGeneticsDNQX[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyBOTRYTIS-CINEREA030304 developmental biologyHyaloperonospora arabidopsidisNITRIC-OXIDEArabidopsis ProteinsCell Biologybiology.organism_classificationSALICYLIC-ACIDchemistryPLASMA-MEMBRANEReactive Oxygen Species010606 plant biology & botanyThe Plant Journal
researchProduct

Calcium signaling in plant defense: involvement of subcellular compartments and glutamate receptorsCalcium signaling in plant defense: involvement of…

2012

[SDV] Life Sciences [q-bio][SDE] Environmental SciencesCalcium signaling Cryptogein oligogalacturonides mitochondria chloroplasts glutamate receptors Hyaloperonospora arabidopsidis Arabidopsis thaliana Nicotiana tabacumthese
researchProduct