0000000000360156
AUTHOR
Ph. Jacquet
Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating
We describe a new technique for the efficient generation of high-energy ions with electromagnetic ion cyclotron waves in multi-ion plasmas. The discussed ‘three-ion’ scenarios are especially suited for strong wave absorption by a very low number of resonant ions. To observe this effect, the plasma composition has to be properly adjusted, as prescribed by theory. We demonstrate the potential of the method on the world-largest plasma magnetic confinement device, JET (Joint European Torus, Culham, UK), and the high-magnetic-field tokamak Alcator C-Mod (Cambridge, USA). The obtained results demonstrate efficient acceleration of 3He ions to high energies in dedicated hydrogen–deuterium mixtures.…
Overview of the JET results in support to ITER
The 2014–2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L–H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent m…
Letter
We present a study of the power threshold for L–H transitions (PLH) in almost pure helium plasmas, obtained in recent experiments at JET with an ITER-like wall (Be wall and W divertor). The most notable new result is that the density at which PLH is minimum, ${\bar{n}}_{\text{e},\mathrm{min}}$, is considerably higher for helium than for deuterium and hydrogen plasmas. We discuss the possible implications for ITER in its pre-fusion operating power phase.
Analysis of metallic impurity content by means of VUV and SXR diagnostics in hybrid discharges with hot-spots on the JET-ITER-like wall poloidal limiter
In preparation for the upcoming JET D-T campaign, great effort has been devoted during the 2015-2016 JET campaigns with the ITER-like wall (ILW) to the extension of the high performance H-mode phase in baseline and hybrid scenarios. Hybrid discharges were the only ones that have been stopped by the real-time vessel protection system due hot-spot formation on the outboard poloidal limiter. Generation of hot-spots was linked to the application of high neutral beams injection and ion cyclotron resonance heating (ICRH) power. In tokamaks with high-Z plasma components, the use of ICRH heating is also accompanied by an increased metallic impurity content. Simultaneous control of hot-spot temperat…