0000000000362338

AUTHOR

Annamaria Ficara

0000-0001-9517-4131

showing 13 related works from this author

Correlations among Game of Thieves and other centrality measures in complex networks

2021

Social Network Analysis (SNA) is used to study the exchange of resources among individuals, groups, or organizations. The role of individuals or connections in a network is described by a set of centrality metrics which represent one of the most important results of SNA. Degree, closeness, betweenness and clustering coefficient are the most used centrality measures. Their use is, however, severely hampered by their computation cost. This issue can be overcome by an algorithm called Game of Thieves (GoT). Thanks to this new algorithm, we can compute the importance of all elements in a network (i.e. vertices and edges), compared to the total number of vertices. This calculation is done not in…

Social and Information Networks (cs.SI)FOS: Computer and information sciencesTheoretical computer scienceCentrality measureDegree (graph theory)Settore INF/01 - InformaticaComputer scienceClosenessSocial network analysiComputer Science - Social and Information NetworksComplex networkComplex networkBetweenness centralityCorrelation coefficientsCentralityTime complexitySocial network analysisClustering coefficient
researchProduct

Dynamic Community Discovery Method Based on Phylogenetic Planted Partition in Temporal Networks

2022

As most of the community discovery methods are researched by static thought, some community discovery algorithms cannot represent the whole dynamic network change process efficiently. This paper proposes a novel dynamic community discovery method (Phylogenetic Planted Partition Model, PPPM) for phylogenetic evolution. Firstly, the time dimension is introduced into the typical migration partition model, and all states are treated as variables, and the observation equation is constructed. Secondly, this paper takes the observation equation of the whole dynamic social network as the constraint between variables and the error function. Then, the quadratic form of the error function is minimized…

Fluid Flow and Transfer Processescommunity discoverySettore INF/01 - Informaticatemporal networksProcess Chemistry and TechnologyGeneral Engineeringtemporal networks; community discovery; phylogenetic evolution; planted of partitionplanted of partitionGeneral Materials Sciencephylogenetic evolutionInstrumentationComputer Science ApplicationsApplied Sciences; Volume 12; Issue 8; Pages: 3795
researchProduct

Criminal networks analysis in missing data scenarios through graph distances

2021

Data collected in criminal investigations may suffer from issues like: (i) incompleteness, due to the covert nature of criminal organizations; (ii) incorrectness, caused by either unintentional data collection errors or intentional deception by criminals; (iii) inconsistency, when the same information is collected into law enforcement databases multiple times, or in different formats. In this paper we analyze nine real criminal networks of different nature (i.e., Mafia networks, criminal street gangs and terrorist organizations) in order to quantify the impact of incomplete data, and to determine which network type is most affected by it. The networks are firstly pruned using two specific m…

Euclidean distanceData collectionComputer scienceNode (networking)Law enforcementGraph (abstract data type)Adjacency listData miningMissing datacomputer.software_genreCriminal investigationcomputerCrimRxiv
researchProduct

Social network analysis: the use of graph distances to compare artificial and criminal networks

2021

Aim: Italian criminal groups become more and more dangerous spreading their activities into new sectors. A criminal group is made up of networks of hundreds of family gangs which extended their influence across the world, raking in billions from drug trafficking, extortion and money laundering. We focus in particular on the analysis of the social structure of two Sicilian crime families and we used a Social Network Analysis approach to study the social phenomena. Starting from a real criminal network extracted from meetings emerging from the police physical surveillance during 2000s, we here aim to create artificial models that present similar properties. Methods: We use specific tools of s…

Theoretical computer sciencesocial network analysisSpectral distanceSettore INF/01 - InformaticaComputer sciencegraph theorySocial network analysis (criminology)social network analysiGraph theoryspectral distancenetwork modelCriminal networksCriminal networkGraph (abstract data type)Criminal networks social network analysis graph theory spectral distance network modelNetwork model
researchProduct

Correlation Analysis of Node and Edge Centrality Measures in Artificial Complex Networks

2021

The role of an actor in a social network is identified through a set of measures called centrality. Degree centrality, betweenness centrality, closeness centrality, and clustering coefficient are the most frequently used metrics to compute the node centrality. Their computational complexity in some cases makes unfeasible, when not practically impossible, their computations. For this reason, we focused on two alternative measures, WERW-Kpath and Game of Thieves, which are at the same time highly descriptive and computationally affordable. Our experiments show that a strong correlation exists between WERW-Kpath and Game of Thieves and the classical centrality measures. This may suggest the po…

Theoretical computer scienceSettore INF/01 - InformaticaComputational complexity theorySocial networkComputer sciencebusiness.industryNode (networking)Complex networksComplex networkSocial network analysisK-pathBetweenness centralityCentrality measuresCorrelation coefficientsCentralitybusinessSocial network analysisClustering coefficient
researchProduct

Disrupting resilient criminal networks through data analysis: The case of Sicilian Mafia

2020

Compared to other types of social networks, criminal networks present hard challenges, due to their strong resilience to disruption, which poses severe hurdles to law-enforcement agencies. Herein, we borrow methods and tools from Social Network Analysis to (i) unveil the structure of Sicilian Mafia gangs, based on two real-world datasets, and (ii) gain insights as to how to efficiently disrupt them. Mafia networks have peculiar features, due to the links distribution and strength, which makes them very different from other social networks, and extremely robust to exogenous perturbations. Analysts are also faced with the difficulty in collecting reliable datasets that accurately describe the…

FOS: Computer and information sciencesEconomicsComputer science0211 other engineering and technologiesSocial SciencesCriminology02 engineering and technologycomputer.software_genreSocial NetworkingSociologyStatistics - Machine LearningCentralityCriminals; Humans; Sicily; Social NetworkingSicilySocial network analysisHuman CapitalMultidisciplinarySettore INF/01 - InformaticaQ05 social sciencesRComputer Science - Social and Information NetworksPoliceProfessionsSocial NetworksMedicineCrimeNetwork AnalysisResearch ArticleNetwork analysisComputer and Information SciencesScienceMachine Learning (stat.ML)Computer securityNetwork ResilienceHuman capitalBetweenness centralityHumansResilience (network)0505 lawBlock (data storage)Social and Information Networks (cs.SI)021110 strategic defence & security studiesSocial networkbusiness.industryNode (networking)CriminalsCommunicationsPeople and Places050501 criminologyPopulation GroupingsCentralitybusinesscomputer
researchProduct

Social Network Analysis of Sicilian Mafia Interconnections

2019

In this paper, we focus on the study of Sicilian Mafia organizations through Social Network Analysis. We analyse datasets reflecting two different Mafia Families, based on examinations of digital trails and judicial documents, respectively. The first dataset includes the phone calls logs among suspected individuals. The second one is based on police traces of meeting that have taken place among different types of criminals. Our breakthrough is twofold. First in the method followed to generate these new datasets. Second, in the method used to carry out a quantitative phenomena investigation that are hard to evaluate. Our networks are weighted ones, with each weight catching the frequency of …

Focus (computing)Settore INF/01 - InformaticaComputer scienceSocial network analysis (criminology)Complex networksGraph theoryComplex networkData scienceCriminal networkslanguage.human_languageGraph theoryPhoneTerrorismComplex networks; Criminal networks; Graph theory; Social Network AnalysislanguageSicilianSocial Network Analysis
researchProduct

Robust link prediction in criminal networks: A case study of the Sicilian Mafia

2020

Abstract Link prediction exercises may prove particularly challenging with noisy and incomplete networks, such as criminal networks. Also, the link prediction effectiveness may vary across different relations within a social group. We address these issues by assessing the performance of different link prediction algorithms on a mafia organization. The analysis relies on an original dataset manually extracted from the judicial documents of operation “Montagna”, conducted by the Italian law enforcement agencies against individuals affiliated with the Sicilian Mafia. To run our analysis, we extracted two networks: one including meetings and one recording telephone calls among suspects, respect…

0209 industrial biotechnologyComputer scienceSettore SPS/12 - SOCIOLOGIA GIURIDICA DELLA DEVIANZA E MUTAMENTO SOCIALENetwork science02 engineering and technologyMachine learningcomputer.software_genreCriminal networksSocial groupSocial network analysis020901 industrial engineering & automationArtificial IntelligenceLink prediction in uncertain graphs0202 electrical engineering electronic engineering information engineeringLink (knot theory)Settore INF/01 - Informaticabusiness.industryGeneral EngineeringLaw enforcementCriminal networks; Link prediction in uncertain graphs; Network science; Social network analysisSettore ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI16. Peace & justicelanguage.human_languageComputer Science ApplicationslanguageTopological graph theory020201 artificial intelligence & image processingArtificial intelligencebusinessSiciliancomputerExpert Systems with Applications
researchProduct

Multilayer Network Analysis: The Identification of Key Actors in a Sicilian Mafia Operation

2021

Recently, Social Network Analysis studies have led to an improvement and to a generalization of existing tools to networks with multiple subsystems and layers of connectivity. These kind of networks are usually called multilayer networks. Multilayer networks in which each layer shares at least one node with some other layer in the network are called multiplex networks. Being a multiplex network does not require all nodes to exist on every layer. In this paper, we built a criminal multiplex network which concerns an anti-mafia operation called “Montagna” and it is based on the examination of a pre-trial detention order issued on March 14, 2007 by the judge for preliminary investigations of t…

Social and Information Networks (cs.SI)FOS: Computer and information sciencesPhysics - Physics and SocietyFocus (computing)Settore INF/01 - InformaticaMultilayer networksComputer sciencebusiness.industryNode (networking)Criminal networks; Multilayer networks; Social network analysisSocial network analysis (criminology)FOS: Physical sciencesComputer Science - Social and Information NetworksPhysics and Society (physics.soc-ph)Criminal networksSocial network analysisIdentification (information)PhoneKey (cryptography)Layer (object-oriented design)businessNetwork analysisComputer network
researchProduct

Game of Thieves and WERW-Kpath: Two Novel Measures of Node and Edge Centrality for Mafia Networks

2021

Real-world complex systems can be modeled as homogeneous or heterogeneous graphs composed by nodes connected by edges. The importance of nodes and edges is formally described by a set of measures called centralities which are typically studied for graphs of small size. The proliferation of digital collection of data has led to huge graphs with billions of nodes and edges. For this reason, we focus on two new algorithms, Game of Thieves and WERW-Kpath which are computationally-light alternatives to the canonical centrality measures such as degree, node and edge betweenness, closeness and clustering. We explore the correlation among these measures using the Spearman’s correlation coefficient …

Theoretical computer scienceSettore INF/01 - InformaticaDegree (graph theory)Computer scienceClosenessComplex networksMafia networksComplex networkCorrelationComputational complexityBetweenness centralityNode (computer science)CentralityRank (graph theory)Cluster analysisCentrality
researchProduct

Graph Comparison and Artificial Models for Simulating Real Criminal Networks

2021

Network Science is an active research field, with numerous applications in areas like computer science, economics, or sociology. Criminal networks, in particular, possess specific topologies which allow them to exhibit strong resilience to disruption. Starting from a dataset related to meetings between members of a Mafia organization which operated in Sicily during 2000s, we here aim to create artificial models with similar properties. To this end, we use specific tools of Social Network Analysis, including network models (Barabási-Albert identified to be the most promising) and metrics which allow us to quantify the similarity between two networks. To the best of our knowledge, the DeltaCo…

Settore INF/01 - Informaticabusiness.industryComplex networksContext (language use)Network scienceGraph theoryComplex networkGraph comparisonMachine learningcomputer.software_genreNetwork topologyCriminal networksGraph similarityGraph theorySocial network analysisGraph (abstract data type)Graph matchingArtificial intelligencebusinessResilience (network)Social network analysiscomputer
researchProduct

The Whole Is Greater than the Sum of the Parts: A Multilayer Approach on Criminal Networks

2022

Traditional social network analysis can be generalized to model some networked systems by multilayer structures where the individual nodes develop relationships in multiple layers. A multilayer network is called multiplex if each layer shares at least one node with some other layer. In this paper, we built a unique criminal multiplex network from the pre-trial detention order by the Preliminary Investigation Judge of the Court of Messina (Sicily) issued at the end of the Montagna anti-mafia operation in 2007. Montagna focused on two families who infiltrated several economic activities through a cartel of entrepreneurs close to the Sicilian Mafia. Our network possesses three layers which sha…

Settore INF/01 - InformaticaComputer Networks and Communicationssocial networkcentralitycriminal networklayer similaritymultilayer network; social network; criminal network; layer similarity; centralitymultilayer networkFuture Internet; Volume 14; Issue 5; Pages: 123
researchProduct

Social network analysis approaches to study crime

2022

Social Network Analysis (SNA) studies groups of individuals and can be applied in a lot of areas such us organizational studies, psychology, economics, information science and criminology. One of the most important results of SNA has been the definition of a set of centrality measures (e.g., degree, closeness, betweenness, or clustering coefficient) which can be used to identify the most influential people with respect to their network of relationships. The main problem with computing centrality metrics on social networks is the typical big size of the data. From the computational point of view, SNA represents social networks as graphs composed of a set of nodes connected by another set of …

complex networkSettore INF/01 - Informaticagraph theorynetwork scienceSocial network analysicentralitycriminal networkmultilayer network
researchProduct