0000000000363908

AUTHOR

Inguanta R.

Fabrication of nanostructured Ni-Co electrodes for hydrogen and oxygen evolution reaction in water-alkaline electrolyzer

Template electrosynthesis is a facile and cheap approach for obtaining nanostructures with very high surface area. This fabrication method has been used to produce electrodes for different applications, among which the electrolysis. In previous works, Ni and IrO2 nanostructured electrodes were tested for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline solution, respectively, without and with addition of Pd nanoparticles. In this work, Ni-Co alloy electrodes were fabricated by the same method, starting from a bath containing a mixture of Ni and Co. After fabrication of the nanostructures and template dissolution, electrodes were characterized by EDS and SEM.…

research product

Electrochemical sensor for phosphate ions based on laser scriber reduced graphene oxide

This preliminary work shows a new and innovative way to produce laser scribed reduced graphene oxide (LSGO) electrodes using different porous substrates (ranging from paper to plastic and fabric). The obtained electrodes were also tested as electrochemical sensors towards the detection of phosphate ions in water. To obtain the electrodes, a water suspension of GO was filtered on top of substrate (such as Whatman® filter paper) and a complete sensor was obtained from its reduction using a CO2 laser. The electrode is composed of working and counter electrodes made of LSGO and a reference electrode of a Ag/AgCl obtained by using a commercial AgCl conductive paste. Phosphate ions were detected …

research product

Co-deposition and characterization of hydroxyapatite-chitosan and hydroxyapatite-polyvinylacetate coatings on 304 SS for biomedical devices

During the last decades, biomaterials have been deeply studied to fabricate and improve coatings for biomedical devices. Metallic materials, especially in the orthopedic field, represent the most common materials used for different type of devices thanks to their good mechanical properties. Nevertheless, low/medium resistance to corrosion and low osteointegration ability characterizes these materials. To overcome these problems, the use of biocoatings on metals substrate is largely diffused. In fact, biocoatings have a key role to confer biocompatibility features, to inhibit corrosion and thus improve the lifetime of implanted devices. In this work, the attention was focused on Hydroxyapati…

research product

Gelled electrolyte for nanostructured lead-acid battery

In recent years, the storage of energy produced by renewable sources has become a topic of great interest. Lead-acid batteries are widely used in this field, in particular those based on VRLA (Valve-Regulated-Lead Acid) technology, in which the electrolyte is immobilized inside the battery. In this paper, the use of a hydrogel as an electrolyte was considered. Hydrogel can be described as a three-dimensional network of a hydrophilic polymer that can absorb large amounts of water (or aqueous solutions) without dissolving. Pb and PbO2 nanostructured electrodes were used in the battery that used hydrogel as an electrolyte. Two different types of hydrogels were synthesised, both based on PVA th…

research product

Flexible electrode based on gold nanoparticles and reduced graphene oxide for uric acid detection using linear sweep voltammetry

In this work, an electrochemical sensor for uric acid determination is shown with a preliminary study for its validation in real samples (milk and urine). Uric acid can be electrochemically oxidized in aqueous solutions and thus it is possible to obtain electrochemical sensors for this chemical by means of this electrooxidation reaction. Indium tin oxide coated on flexible polyethylene terephthalate substrate, modified with reduced graphene oxide and gold nanoparticles by co-electrodeposition, was used. Electrodeposition was performed at -0.8V vs SCE for 200 s. All samples were characterized by electron scan microscopy and electron diffraction spectroscopy. A careful investigation on the ef…

research product

Galvanic deposition of Hydroxyapatite/Chitosan/Collagen coatings on 304 stainless steel

The galvanic deposition method was used to deposit Hydroxyapatite/Chitosan/Collagen coatings on 304 stainless steel. Galvanic deposition is an alternative and valid way to fabricate bio-coatings with high biocompatibility and good anticorrosion properties. Physical-chemical characterizations were carried out to investigate chemical composition and morphology of the samples. Coatings consist of a mixture of calcium phosphate (Brushite and Hydroxyapatite) with chitosan and collagen. Corrosion tests were performed in the simulated body fluid (SBF) after different aging times. Results show that, in comparison with bare 304 stainless steel, coating shifts corrosion potential to anodic values and…

research product

Nanostructured Materials Obtained by Electrochemical Methods: From Fabrication to Application in Sensing, Energy Conversion, and Storage

It is well known that physical and surface properties of nanomaterials are promising to enhance efficiency of nanostructured devices for sensing and for sustainable energy production, conversion, and storage. However, the practical use of nanomaterials is often complicated by the lack of scalable and cost-efficient synthesis procedures and the challenge of integrating into devices 1D nanomaterials saving their structural features. In this field, one of the most severe challenges is to find suitable methods for fabricating nanomaterials. Over the years, numerous preparation methods were proposed in the literature, but not all of them are easily scalable and economically advantageous for indu…

research product