0000000000364943
AUTHOR
Marta Bitrián
Genetic Engineering Strategies for Abiotic Stress Tolerance in Plants
Crop plants are affected by a variety of abiotic stresses such as salinity, drought, extreme temperatures, and oxidative stress and cause a significant yield loss (more than 50 %). In the near future, these abiotic stresses might increase because of global climate change. Abiotic stresses lead to dehydration or osmotic stress through reduced availability of water for vital cellular functions and maintenance of turgor pressure and also result in high production of reactive oxygen species (ROS). Plants are evolved with various mechanisms such as changes in cellular and metabolic processes to cope with the stress condition. Recent developments in molecular genetics have contributed greatly to …
Polyamine Biosynthesis Engineering as a Tool to Improve Plant Resistance to Abiotic Stress
Polyamines (PAs) are small polycationic molecules which are present in all living organisms. PAs have been involved in a wide array of metabolic plant processes, extending from development to stress protection. Most of this knowledge has been achieved through the observation of PA homeostasis and manipulation of plant PA levels mediated by different approaches. This chapter summarizes the approaches undertaken to demonstrate the relationship between PAs and the stress response and, in particular, how the genetic manipulation of polyamine levels has evolved in a useful tool for the enhancement of plant stress tolerance in many species, including crops. This chapter also includes the most rec…