0000000000365182
AUTHOR
Ahmad Moini
Recent advances in the preparation of zeolites for the selective catalytic reduction of NOx in diesel engines
Metal-exchanged zeolites with small pore sizes have attracted much attention in recent years due to their application in the selective catalytic reduction (SCR) of NOx in diesel engines. Typically, copper-chabazite (e.g. Cu-SSZ-13) has been gradually used as an SCR catalyst in heavy-duty diesel vehicles over the last decade due to its relatively excellent catalytic performance and stability. However, most SSZ-13 zeolites are still prepared via the traditional hydrothermal process in the presence of organic templates, requiring consecutive solid separation and thermal treatment steps to achieve the final zeolite products. In recent years, several strategies for the environmentally friendly p…
Fe-doped Beta zeolite from organotemplate-free synthesis for NH3-SCR of NOx
Two types of Beta zeolites, one from organotemplate-free synthesis with a Si/Al ratio of 9 and the other from a commercial one with a Si/Al ratio of 19, were employed here to dope Fe for NH3-SCR of NOx. Fe-Beta (Si/Al = 9) exhibits much higher activity than Fe-Beta (Si/Al = 19), especially at low-temperature regions (<250 °C). In addition, it also exhibits better hydrothermal stability as compared with Fe-Beta (Si/Al = 19), which demonstrates that it is a promising SCR catalyst with good activity as well as hydrothermal stability. The correlation between the quantitative calculation of the content of isolated Fe3+ in Beta zeolites and the NO conversion rate at 150 °C shows a linear relation…
Improvement of catalytic activity over Cu--Fe modified Al-rich Beta catalyst for the selective catalytic reduction of NOx with NH3
Copper and iron bimetal modified Al-rich Beta zeolites from template-free synthesis were prepared for selective catalytic reduction (SCR) of NOx with NH3 in exhaust gas streams. Comparing to the Cu-based and Fe-based mono-component Beta catalysts, Cu(3.0)-Fe(1.3)-Beta bi-component catalyst shows better low-temperature activity and wider reaction-temperature window. Over 80% of NO conversion can be achieved at the temperature region of 125–500 °C. Due to the synergistic effect of copper and iron evidenced by XRD, UV–Vis–NIR, EPR and XPS measurements, the dispersion state of active components as well as the ratio of Cu2+/Cu+ and Fe3+/Fe2+ were improved over Cu(3.0)-Fe(1.3)-Beta. Isolated Cu2+…
Cu-exchanged Al-rich SSZ-13 zeolite from organotemplate-free synthesis as NH3-SCR catalyst: Effects of Na+ ions on the activity and hydrothermal stability
Abstract The relatively low activity at lower temperatures and high cost of SSZ-13 zeolite from organotemplate synthesis are two of major problems of presently commercialized Cu-SSZ-13 catalysts for NH3-SCR reaction. Cu-exchanged Al-rich SSZ-13 catalysts with Si/Al = 4 from organotemplate-free synthesis have been prepared, and show superior NH3-SCR performance with NO conversions above 85% at wide-temperature window ranging from 150 to 650 °C. Cu-Na-SSZ-13 catalysts with varied amount of residual Na+ were prepared by partial ion-exchange of as-prepared Al-rich Na-SSZ-13, and it’s found that Cu-Na-SSZ-13 catalyst with moderate Na+ content can improve both the low-temperature activity and its…
Efficient and rapid transformation of high silica CHA zeolite from FAU zeolite in the absence of water
High silica CHA zeolite plays an important role in selective catalytic reduction of NOx with NH3 (NH3-SCR), but its synthesis is not highly efficient due to the use of a relatively high-cost structural directing agent (SDA) N,N,N-trimethyl-adamantammonium hydroxide (TMAdaOH) and relatively long crystallization time under hydrothermal conditions. Herein, we report an efficient and rapid synthesis of a high silica CHA zeolite possessing good crystallinity and uniform crystals (CHA-ST). The method includes interzeolite transformation of high silica FAU zeolite in the absence of water but the presence of zeolite seeds and a bromide form of the SDA. The absence of water in the synthesis signific…