Turing Instability and Pattern Formation in an Activator-Inhibitor System with Nonlinear Diffusion
In this work we study the effect of density dependent nonlinear diffusion on pattern formation in the Lengyel--Epstein system. Via the linear stability analysis we determine both the Turing and the Hopf instability boundaries and we show how nonlinear diffusion intensifies the tendency to pattern formation; %favors the mechanism of pattern formation with respect to the classical linear diffusion case; in particular, unlike the case of classical linear diffusion, the Turing instability can occur even when diffusion of the inhibitor is significantly slower than activator's one. In the Turing pattern region we perform the WNL multiple scales analysis to derive the equations for the amplitude o…