0000000000367147

AUTHOR

Francesca Mazzara

0000-0002-0104-8757

showing 6 related works from this author

PANI-Based Wearable Electrochemical Sensor for pH Sweat Monitoring

2021

Nowadays, we are assisting in the exceptional growth in research relating to the development of wearable devices for sweat analysis. Sweat is a biofluid that contains useful health information and allows a non-invasive, continuous and comfortable collection. For this reason, it is an excellent biofluid for the detection of different analytes. In this work, electrochemical sensors based on polyaniline thin films deposited on the flexible substrate polyethylene terephthalate coated with indium tin oxide were studied. Polyaniline thin films were abstained by the potentiostatic deposition technique, applying a potential of +2 V vs. SCE for 90 s. To improve the sensor performance, the electronic…

Materials scienceelectrochemical sensor02 engineering and technologySubstrate (electronics)QD415-436wearable sensor010402 general chemistry01 natural sciencespH meterBiochemistryreduced graphene oxidepolyanilineAnalytical ChemistryContact anglechemistry.chemical_compoundPolyanilineSettore ING-IND/17 - Impianti Industriali MeccanicipH sensorPhysical and Theoretical ChemistryThin filmSettore ING-IND/34 - Bioingegneria Industriale021001 nanoscience & nanotechnology0104 chemical sciencesElectrochemical gas sensorIndium tin oxidesweatSettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringchemistryElectrode0210 nano-technologyChemosensors
researchProduct

Ascorbic Acid determination using linear sweep voltammetry on flexible electrode modified with gold nanoparticles and reduced graphene oxide

2020

Indium tin oxide (ITO) coated on flexible polyethylene terephthalate (PET) substrate electrode was modified with reduced graphene oxide and gold nanoparticles by simple co-electrodeposition performed at -0.8 V vs SCE for 200 s. All samples were characterized by electron scan microscopy. The as prepared electrode was used as electrochemical sensor to selective detection of ascorbic acid using linear sweep voltammetry. Excellent results were obtained in a linear range from 20 to 150 µM of ascorbic acid with a limit of detection of about 3.1 µM (S/N=3.3). The sensors have a reproducibility of about 5.5% and also show high selectivity towards different interferents such as chlorine, calcium, ma…

Materials scienceElectrochemical sensors ascorbic acid food industry milk reduced graphene oxide gold nanoparticles linear sweep voltammetryfood industryOxide02 engineering and technology010402 general chemistry01 natural sciencesreduced graphene oxidelaw.inventionchemistry.chemical_compoundlawSettore ING-IND/17 - Impianti Industriali MeccanicimilkGrapheneelectrochemical sensors021001 nanoscience & nanotechnologyAscorbic acid0104 chemical sciencesIndium tin oxideElectrochemical gas sensorSettore ING-IND/23 - Chimica Fisica ApplicatachemistryColloidal goldgold nanoparticlesElectrodeLinear sweep voltammetryascorbic acid0210 nano-technologylinear sweep voltammetryNuclear chemistry
researchProduct

Electrochemical detection of uric acid and ascorbic acid using r-GO/NPs based sensors

2021

Abstract A sensitive and selective electrochemical sensor, based on reduced graphene oxide and gold nanoparticles obtained by simple co-electrodeposition, was developed for the detection of uric acid and ascorbic acid. Because of the electrochemical oxidation of both uric and ascorbic acid depending on the pH, the sensor performances were studied at different pH values. Excellent results were obtained for uric acid detection in a linear range from 10 to 500 µmol dm−3 with a sensitivity of 0.31 µA cm−2 µM−1. A limit of detection and quantification of 3.6 µM and 10.95 µmol dm−3, respectively, was calculated. Sensors showed good selectivity toward different interfering species present in the m…

Detection limitChromatographyGeneral Chemical Engineering02 engineering and technologyUrineUric acid Food010402 general chemistry021001 nanoscience & nanotechnologyAscorbic acid01 natural sciences0104 chemical sciencesElectrochemical gas sensorMatrix (chemical analysis)chemistry.chemical_compoundBody fluidsSettore ING-IND/23 - Chimica Fisica ApplicatachemistryLinear rangeElectrochemical sensorColloidal goldSettore ING-IND/17 - Impianti Industriali MeccaniciElectrochemistryUric acidAscorbic acid0210 nano-technology
researchProduct

Electrochemical detection of dopamine with negligible interference from ascorbic and uric acid by means of reduced graphene oxide and metals-NPs base…

2021

Abstract Dopamine is an important neurotransmitter involved in many human biological processes as well as in different neurodegenerative diseases. Monitoring the concentration of dopamine in biological fluids, i.e., blood and urine is an effective way of accelerating the early diagnosis of these types of diseases. Electrochemical sensors are an ideal choice for real-time screening of dopamine as they can achieve fast, portable inexpensive and accurate measurements. In this work, we present electrochemical dopamine sensors based on reduced graphene oxide coupled with Au or Pt nanoparticles. Sensors were developed by co-electrodeposition onto a flexible substrate, and a systematic investigati…

Dopaminechemistry.chemical_elementMetal NanoparticlesNanotechnologyAscorbic AcidPlatinum nanoparticlesBiochemistryAnalytical Chemistrylaw.inventionlawSettore ING-IND/17 - Impianti Industriali MeccaniciEnvironmental ChemistryHumansElectrodesSpectroscopyPlatinumDetection limitChemistryGrapheneSubstrate (chemistry)Electrochemical TechniquesUric AcidSettore ING-IND/23 - Chimica Fisica ApplicataLinear rangeColloidal goldElectrodeGraphiteGoldDopamine Electrochemical sensor Graphene oxide Metal nanoparticles Neurodegenerative disease UrinePlatinumAnalytica chimica acta
researchProduct

FLEXIBLE ELECTRODE BASED ON GOLD NANOPARTICLES AND REDUCED GRAPHENE OXIDE FOR URIC ACID DETECTION USING LINEAR SWEEP VOLTAMMETRY

2021

In this work, an electrochemical sensor for uric acid determination is shown with a preliminary study for its validation in real samples (milk and urine). Uric acid can be electrochemically oxidized in aqueous solutions and thus it is possible to obtain electrochemical sensors for this chemical by means of this electrooxidation reaction. Indium tin oxide coated on flexible polyethylene terephthalate substrate, modified with reduced graphene oxide and gold nanoparticles by co-electrodeposition, was used. Electrodeposition was performed at -0.8V vs SCE for 200 s. All samples were characterized by electron scan microscopy and electron diffraction spectroscopy. A careful investigation on the ef…

TK7885-7895Computer engineering. Computer hardwareMilkChemical engineeringSettore ING-IND/23 - Chimica Fisica ApplicataElectrochemical sensorTP155-156UrineUric acidUric acid Electrochemical sensors Reduced graphene oxide Gold nanoparticles Milk Urine
researchProduct

FABBRICAZIONE DI SENSORI ELETTROCHIMICI NANOSTRUTTURATI PER APPLICAZIONI NELL’INDUSTRIA ALIMENTARE E BIOMEDICHE

2023

Settore ING-IND/23 - Chimica Fisica ApplicataAscorbic Acid Uric Acid Sensors Electrochemical Oxidation Reduced Graphene Oxide Gold Nanoparticles Electrochemical Sensors Body Fluids Electrodeposition Glucose Milk Fruit Juice Urine Sweat pH PANI Dopamine
researchProduct