0000000000368079

AUTHOR

Sebastian Altenhöfer

showing 4 related works from this author

Protective effect of paraoxonase-2 against endoplasmic reticulum stress-induced apoptosis is lost upon disturbance of calcium homoeostasis

2008

PON2 (paraoxonase-2) is a ubiquitously expressed antioxidative protein which is largely found in the ER (endoplasmic reticulum). Addressing the cytoprotective functions of PON2, we observed that PON2 overexpression provided significant resistance to ER-stress-induced caspase 3 activation when the ER stress was induced by interference with protein modification (by tunicamycin or dithiothreitol), but not when ER stress was induced by disturbance of Ca2+ homoeostasis (by thapsigargin or A23187). When analysing the underlying molecular events, we found an activation of the PON2 promoter in response to all tested ER-stress-inducing stimuli. However, only tunicamycin and dithiothreitol resulted i…

ThapsigarginRNA StabilityApoptosisCaspase 3Protein degradationEndoplasmic ReticulumBiochemistryGene Expression Regulation EnzymologicCell Linechemistry.chemical_compoundStress PhysiologicalHomeostasisHumansEnzyme InhibitorsPromoter Regions Genetic3' Untranslated RegionsMolecular BiologyCalcimycinIonophoresbiologyAryldialkylphosphataseCalpainTunicamycinEndoplasmic reticulumCalpainCell BiologyTunicamycinCell biologyDithiothreitolchemistryApoptosisbiology.proteinUnfolded protein responseThapsigarginCalcium5' Untranslated RegionsBiochemical Journal
researchProduct

The polypyrimidine tract-binding protein (PTB) is involved in the post-transcriptional regulation of human inducible nitric oxide synthase expression.

2006

Human inducible nitric oxide synthase (iNOS) expression is regulated by transcriptional and post-transcriptional mechanisms. We have recently shown that the multifunctional RNA-binding proteins KH-type splicing regulatory protein and tristetraprolin are critically involved in the post-transcriptional regulation of human iNOS expression. Several reports have shown that KH-type splicing regulatory protein colocalizes with the polypyrimidine tract-binding protein (PTB), and both RNA-binding proteins seem to interact with the same mRNAs. Therefore we analyzed the involvement of PTB in human iNOS expression. In human DLD-1 cells, cytokine incubation necessary to induce iNOS expression did not ch…

Recombinant Fusion ProteinsTristetraprolinGreen Fluorescent ProteinsNitric Oxide Synthase Type IImacromolecular substancesBiologyIn Vitro TechniquesTransfectionenvironment and public healthBiochemistryGene Expression Regulation EnzymologicCell LineCell Line TumorHumansPolypyrimidine tract-binding proteinRNA MessengerEnzyme InhibitorsPromoter Regions GeneticMolecular BiologyPost-transcriptional regulationRegulation of gene expressionMessenger RNAintegumentary systemCarcinomaEpithelial CellsCell BiologyTransfectionMolecular biologyNitric oxide synthaseRNA splicingColonic Neoplasmsbiology.proteinCytokinesRNA InterferenceProtein Processing Post-TranslationalDichlororibofuranosylbenzimidazolePolypyrimidine Tract-Binding ProteinThe Journal of biological chemistry
researchProduct

One Enzyme, Two Functions

2010

The human enzyme paraoxonase-2 (PON2) has two functions, an enzymatic lactonase activity and the reduction of intracellular oxidative stress. As a lactonase, it dominantly hydrolyzes bacterial signaling molecule 3OC12 and may contribute to the defense against pathogenic Pseudomonas aeruginosa. By its anti-oxidative effect, PON2 reduces cellular oxidative damage and influences redox signaling, which promotes cell survival. This may be appreciated but also deleterious given that high PON2 levels reduce atherosclerosis but may stabilize tumor cells. Here we addressed the unknown mechanisms and linkage of PON2 enzymatic and anti-oxidative function. We demonstrate that PON2 indirectly but specif…

chemistry.chemical_classificationReactive oxygen speciesbiologySuperoxideCytochrome cParaoxonaseCell BiologyMitochondrionBiochemistrychemistry.chemical_compoundchemistryBiochemistryCoenzyme Q – cytochrome c reductasebiology.proteinLactonaseInner mitochondrial membraneMolecular BiologyJournal of Biological Chemistry
researchProduct

Similar Regulation of Human Inducible Nitric-oxide Synthase Expression by Different Isoforms of the RNA-binding Protein AUF1

2008

The ARE/poly-(U) binding factor 1 (AUF1), a protein family consisting of four isoforms, is believed to mediate mRNA degradation by binding to AU-rich elements (ARE). However, evidence exists that individual AUF1 isoforms may stabilize ARE-containing mRNAs. The 3'-untranslated region of the human inducible nitric-oxide synthase (iNOS) contains five AREs, which promote RNA degradation. We have recently shown that the RNA-binding protein KSRP is critically involved in the decay of the iNOS mRNA. In this study we examined the effects of the individual AUF1 isoforms on iNOS expression. Overexpression of each AUF1 isoform reduces iNOS expression on mRNA and protein levels to the same extent by mo…

Gene isoformNitric Oxide Synthase Type IIRNA-binding proteinPolymerase Chain ReactionBiochemistryRNA interferenceCell Line TumorHumansImmunoprecipitationProtein IsoformsHeterogeneous Nuclear Ribonucleoprotein D0Heterogeneous-Nuclear Ribonucleoprotein DPromoter Regions Genetic3' Untranslated RegionsMolecular BiologyDNA PrimersGene knockdownMessenger RNABase SequencebiologyATP synthaseCell BiologyTransfectionMolecular biologyNitric oxide synthasebiology.proteinRNA InterferenceJournal of Biological Chemistry
researchProduct