0000000000369910

AUTHOR

I Bartoli

Impact Force Identification and Location on Isotropic and Composite Panels.

research product

Ultrasonic Guided Waves-Based Monitoring of Rail Head: Laboratory and Field Tests in Advances in Civil Engineering

Recent train accidents have reaffirmed the need for developing a rail defect detection system more effective than that currently used. One of the most promising techniques in rail inspection is the use of ultrasonic guided waves and noncontact probes. A rail inspection prototype based on these concepts and devoted to the automatic damage detection of defects in rail head is the focus of this paper. The prototype includes an algorithm based on wavelet transform and outlier analysis. The discrete wavelet transform is utilized to denoise ultrasonic signals and to generate a set of relevant damage sensitive data. These data are combined into a damage index vector fed to an unsupervised learning…

research product

Digital signal processing for rail monitoring by means of ultrasonic guided waves

Recent train accidents have reaffirmed the need for developing rail defect detection systems that are more effective than those used today. One of the recent developments in rail inspection is the use of ultrasonic guided waves (UGWs) and non-contact probing techniques to target transverse-type defects. Besides the obvious advantages of non-contact probing, that include robustness and a potential for large inspection speed, such a system can theoretically detect transverse defects under horizontal shelling or head checks. This paper demonstrates the effectiveness of digital signal processing to enhance the damage detection sensitivity of the non-contact system. The method proposed here comb…

research product