0000000000370214

AUTHOR

Bruno Jeanneret

Energy management strategy to reduce pollutant emissions during the catalyst light-off of parallel hybrid vehicles

Abstract The transportation sector is a major contributor to both air pollution and greenhouse gas emissions. Hybrid electric vehicles can reduce fuel consumption and CO2 emissions by optimizing the energy management of the powertrain. The purpose of this study is to examine the trade-off between regulated pollutant emissions and hybrid powertrain efficiency. The thermal dynamics of the three-way catalyst are taken into account in order to optimize the light-off. Experimental campaigns are conducted on a spark-ignition engine to introduce simplified models for emissions, exhaust gas temperature, catalyst heat transfers and efficiency. These models are used to determine the optimal distribut…

research product

Optimizing fuel consumption and pollutant emissions of a SI engine for eco-driving applications

International audience

research product

Optimizing Fuel Consumption and Pollutant Emissions of a Spark Ignition Engine for Eco-driving Applications

VPPC 2018, Vehicle Power and Propulsion Conference, Chicago, ETATS-UNIS, 27-/08/2018 - 30/08/2018; The transportation sector is a major contributor to both air pollution and greenhouse gas emissions. While optimizing fuel consumption reduces CO2 emissions, it can increase fuel-rich operation and cause higher HC and CO emissions. A simplified emissions model is thus introduced in order to account for the impact of air/fuel ratio on both the exhaust concentration of regulated pollutants and the catalyst efficiency. This model is used to solve the eco-driving problem with dynamic programming and a weighted objective function. An emission-centered and a consumption-centered scenario are compare…

research product

A simplified thermal model for the three way catalytic converter

TAP 2016, 21st International Transport and Air Pollution Conference, LYON, FRANCE, 24-/05/2016 - 26/05/2016; A semi empirical model based on thermodynamic behaviour of a three way catalytic converter has been proposed to predict temperature evolution of the converter during the cold start. The model is based on energy and mass balance in the TWC considered as control volume. Parameters of the heat equations are identified separately using a step by step approach. Thermocouples have been inserted along the monolith canals to measure the axial evolution of temperature. Experiments on the engine test bench have been conducted to identify the parameters and to validate the model.

research product