0000000000371016

AUTHOR

M. Lettmann

showing 5 related works from this author

Role of the Δ Resonance in the Population of a Four-Nucleon State in the Fe56→Fe54 Reaction at Relativistic Energies

2016

The 54Fe nucleus was populated from a 56Fe beam impinging on a Be target with an energy of E=A ¼ 500 MeV. The internal decay via γ-ray emission of the 10þ metastable state was observed. As the structure of this isomeric state has to involve at least four unpaired nucleons, it cannot be populated in a simple two-neutron removal reaction from the 56Fe ground state. The isomeric state was produced in the low-momentum (-energy) tail of the parallel momentum (energy) distribution of 54Fe, suggesting that it was populated via the decay of the Δ0 resonance into a proton. This process allows the population of fournucleon states, such as the observed isomer. Therefore, it is concluded that the obser…

QuarkPhysicseducation.field_of_studyProton010308 nuclear & particles physicsNuclear TheoryPopulationGeneral Physics and Astronomy7. Clean energy01 natural sciencesResonance (particle physics)MomentumMetastability0103 physical sciencesAtomic physicsNuclear Experiment010306 general physicsNucleoneducationGround statePhysical Review Letters
researchProduct

Isospin dependence of electromagnetic transition strengths among an isobaric triplet

2019

*Aydın, Sezgin ( Aksaray, Yazar )

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsNuclear Theory[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural scienceslcsh:QC1-999Subatomär fysikMatrix (mathematics)Isospin0103 physical sciencesQuadrupoleSubatomic PhysicsIsobaric processElectromagnetic Transition StrengthsAtomic physics010306 general physicsydinfysiikkaMultipletIsospin Dependencelcsh:Physics
researchProduct

$^{78}$Ni revealed as a doubly magic stronghold against nuclear deformation

2019

Nuclear magic numbers, which emerge from the strong nuclear force based on quantum chromodynamics, correspond to fully occupied energy shells of protons, or neutrons inside atomic nuclei. Doubly magic nuclei, with magic numbers for both protons and neutrons, are spherical and extremely rare across the nuclear landscape. While the sequence of magic numbers is well established for stable nuclei, evidence reveals modifications for nuclei with a large proton-to-neutron asymmetry. Here, we provide the first spectroscopic study of the doubly magic nucleus $^{78}$Ni, fourteen neutrons beyond the last stable nickel isotope. We provide direct evidence for its doubly magic nature, which is also predi…

1000ProtonNuclear Theorymedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaStrong interactionNuclear TheoryFOS: Physical sciences01 natural sciencesAsymmetryNuclear Theory (nucl-th)Magic number (programming)0103 physical sciencesEffective field theoryPhysics::Atomic and Molecular ClustersNeutronNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear Experimentmedia_commonPhysics[PHYS]Physics [physics]Multidisciplinary010308 nuclear & particles physicsMagic (programming)Atomic nucleusAtomic physics
researchProduct

Low-lying electric dipole gamma-continuum for the unstable Fe-62,64 nuclei : Strength evolution with neutron number

2020

6 pags., 4 figs.

62Nuclear and High Energy Physics64PhononAstrophysics::High Energy Astrophysical PhenomenaBinding energyNuclear TheoryCoulomb excitation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciences64Fe530Dipole excitation around neutron threshold62FeSubatomär fysik0103 physical sciencesSubatomic Physicsddc:530NeutronNuclear Physics - ExperimentNuclear structure010306 general physicsNuclear ExperimentPhysics010308 nuclear & particles physics62 Fe62; Fe; 64; Fe; Dipole excitation around neutron threshold; Nuclear structureNuclear structure64 FeFelcsh:QC1-999DipoleFe-64Neutron numberFe-62AGATAAtomic physicslcsh:Physics
researchProduct

Study of isomeric states in $^{198,200,202,206}$Pb and $^{206}$Hg populated in fragmentation reactions

2018

International audience; Isomeric states in isotopes in the vicinity of doubly-magic 208Pb were populatedfollowing reactions of a relativistic 208Pb primary beam impinging on a9Be fragmentation target. Secondary beams of 198,200,202,206Pb and 206Hg wereisotopically separated and implanted in a passive stopper positioned in thefocal plane of the GSI Fragment Separator. Delayed γ rays were detected withthe Advanced Gamma Tracking Array (AGATA). Decay schemes were reevaluatedand interpreted with shell-model calculations. The momentumdependentpopulation of isomeric states in the two-nucleon hole nuclei206Pb/206Hg was found to differ from the population of multi neutron-holeisomeric states in 198…

Nuclear and High Energy Physicsisomeric decaysAstrophysics::High Energy Astrophysical PhenomenaPopulationNuclear Theory[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesFragmentation (mass spectrometry)Subatomic Physics0103 physical sciencesGamma spectroscopyGamma-ray spectroscopy010306 general physicseducationNuclear ExperimentPhysicseducation.field_of_studyIsotope010308 nuclear & particles physicsNuclear shell modeldirect reactionsrelativistic projectile fragmentationelectromagnetic transitionsnuclear shell modelAGATAPreSPEC-AGATAAtomic physicsBeam (structure)
researchProduct