0000000000372392

AUTHOR

Anastasia Pampouchidou

0000-0002-6874-9769

showing 14 related works from this author

Video-Based Depression Detection Using Local Curvelet Binary Patterns in Pairwise Orthogonal Planes

2016

International audience; Depression is an increasingly prevalent mood disorder. This is the reason why the field of computer-based depression assessment has been gaining the attention of the research community during the past couple of years. The present work proposes two algorithms for depression detection, one Frame-based and the second Video-based, both employing Curvelet transform and Local Binary Patterns. The main advantage of these methods is that they have significantly lower computational requirements, as the extracted features are of very low dimensionality. This is achieved by modifying the previously proposed algorithm which considers Three-Orthogonal-Planes, to only Pairwise-Ort…

Local binary patternsFeature extractionVideo Recording02 engineering and technology[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processingMachine learningcomputer.software_genreField (computer science)0502 economics and business0202 electrical engineering electronic engineering information engineeringCurveletHumansDiagnosis Computer-Assisted[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processingbusiness.industryDepression05 social sciencesReproducibility of ResultsPattern recognitionActive appearance modelFaceBenchmark (computing)020201 artificial intelligence & image processingPairwise comparisonArtificial intelligencebusinessPsychologycomputer[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing050203 business & managementAlgorithmsCurse of dimensionality
researchProduct

Machine Learning Techniques for Automatic Depression Assessment

2018

Depression is one of the most common mood disorder that is inherently related to emotions, involving bad mood, low self-esteem and loss of interest in normal pleasurable activities. The aim of this work is to develop a framework based on the dataset provided by AVEC'14 for depression assessment. The proposed work presents two different motion representation methods: a) Gabor Motion History Image (GMHI), and b) Motion History Image (MHI). Several combinations of appearance-based low level features are extracted from both motion representations. These features were further combined with statistically derived features, and used for training and testing with several machine learning techniques.…

Computer sciencebusiness.industryWork (physics)020207 software engineering02 engineering and technologyMachine learningcomputer.software_genreMotion (physics)Image (mathematics)Mood0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligencebusinessRepresentation (mathematics)Affective computingF1 scorecomputer2018 41st International Conference on Telecommunications and Signal Processing (TSP)
researchProduct

Deep Learning Techniques for Depression Assessment

2018

Depression is a typical mood disorder, which affects a significant number of individuals worldwide at an increasing rate. Objective measures for early detection of signs related to depression could be beneficial for clinicians with regards to a decision support system. In this paper, assessment of depression is done by applying three deep learning techniques of Convolutional Neural Network (CNN). These techniques are transfer learning using AlexNet, fine-tuning using AlexNet and building an end to end CNN. The inputs of the CNNs are a combination of Motion History Image, Landmark Motion History Image and Gabor Motion History Image, and have been generated on a depression dataset. Accuracy o…

Decision support systemLandmarkComputer sciencebusiness.industryDeep learningFeature extractionMachine learningcomputer.software_genreConvolutional neural networkVisualizationMoodArtificial intelligencebusinessTransfer of learningcomputer2018 International Conference on Intelligent and Advanced System (ICIAS)
researchProduct

Video-based Pain Level Assessment: Feature Selection and Inter-Subject Variability Modeling

2018

Automatic pain level assessment, based on video features, may provide clinically-relevant, objective measures of pain intensity. In various clinical contexts accurate pain level estimation by health care personnel is challenging. This problem is compounded by considerable inter- and intra-individual variability of both perceived pain levels and of the associated facial expressions, especially at low pain levels. Thus, providing objective video-based indices for pain level assessment is a rather computationally challenging problem. In the present work both geometric and color-based features were extracted. The most informative features were identified with lasso regression, and subject varia…

Facial expressionbusiness.industryComputer scienceImage processingFeature selection02 engineering and technologyMachine learningcomputer.software_genre03 medical and health sciences0302 clinical medicine030225 pediatricsPain level0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligenceAffective computingbusinesscomputer2018 41st International Conference on Telecommunications and Signal Processing (TSP)
researchProduct

Depression Assessment by Fusing High and Low Level Features from Audio, Video, and Text

2016

International audience; Depression is a major cause of disability world-wide. The present paper reports on the results of our participation to the depression sub-challenge of the sixth Audio/Visual Emotion Challenge (AVEC 2016), which was designed to compare feature modalities ( audio, visual, interview transcript-based) in gender-based and gender-independent modes using a variety of classification algorithms. In our approach, both high and low level features were assessed in each modality. Audio features were extracted from the low-level descriptors provided by the challenge organizers. Several visual features were extracted and assessed including dynamic characteristics of facial elements…

Computer scienceSpeech recognitionPosterior probabilitymultimodal fusionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONImage processing02 engineering and technology[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI][SPI]Engineering Sciences [physics]AVEC 2016Histogram0202 electrical engineering electronic engineering information engineeringFeature (machine learning)[ SPI ] Engineering Sciences [physics]Affective computingaffective computing[ INFO.INFO-AI ] Computer Science [cs]/Artificial Intelligence [cs.AI]speech processing[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]Modality (human–computer interaction)[ SPI.ACOU ] Engineering Sciences [physics]/Acoustics [physics.class-ph]pattern recognition020206 networking & telecommunicationsSpeech processingimage processingStatistical classificationdepression assessment13. Climate actionPattern recognition (psychology)020201 artificial intelligence & image processing
researchProduct

Stress Detection from Speech Using Spectral Slope Measurements

2018

Automatic detection of emotional stress is an active research domain, which has recently drawn increasing attention, mainly in the fields of computer science, linguistics, and medicine. In this study, stress is automatically detected by employing speech-derived features. Related studies utilize features such as overall intensity, MFCCs, Teager Energy Operator, and pitch. The present study proposes a novel set of features based on the spectral tilt of the glottal source and of the speech signal itself. The proposed features rely on the Probability Density Function of the estimated spectral slopes, and consist of the three most probable slopes from the glottal source, as well as the correspon…

Computer sciencebusiness.industry020206 networking & telecommunicationsProbability density functionPattern recognition02 engineering and technologyFundamental frequencySignalRandom forestEnergy operatorSpectral slopeClassifier (linguistics)0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligencebusinessWord (computer architecture)
researchProduct

Facial geometry and speech analysis for depression detection.

2017

Depression is one of the most prevalent mental disorders, burdening many people world-wide. A system with the potential of serving as a decision support system is proposed, based on novel features extracted from facial expression geometry and speech, by interpreting non-verbal manifestations of depression. The proposed system has been tested both in gender independent and gender based modes, and with different fusion methods. The algorithms were evaluated for several combinations of parameters and classification schemes, on the dataset provided by the Audio/Visual Emotion Challenge of 2013 and 2014. The proposed framework achieved a precision of 94.8% for detecting persons achieving high sc…

Decision support systemFacial expressionDepressive DisorderDepressionSpeech recognition05 social sciencesNearest neighbourClassification scheme02 engineering and technologyFacial geometryBinary operationFace0502 economics and business0202 electrical engineering electronic engineering information engineeringDecision fusionHumansSpeech020201 artificial intelligence & image processingPsychologyClassifier (UML)050203 business & managementAlgorithmsAnnual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
researchProduct

Quantitative comparison of motion history image variants for video-based depression assessment

2017

Abstract Depression is the most prevalent mood disorder and a leading cause of disability worldwide. Automated video-based analyses may afford objective measures to support clinical judgments. In the present paper, categorical depression assessment is addressed by proposing a novel variant of the Motion History Image (MHI) which considers Gabor-inhibited filtered data instead of the original image. Classification results obtained with this method on the AVEC’14 dataset are compared to those derived using (a) an earlier MHI variant, the Landmark Motion History Image (LMHI), and (b) the original MHI. The different motion representations were tested in several combinations of appearance-based …

BiometricsComputer scienceSpeech recognitionlcsh:TK7800-836002 engineering and technologyConvolutional neural networkMotion (physics)[SPI]Engineering Sciences [physics]Image processingMachine learning0502 economics and business[ SPI ] Engineering Sciences [physics]0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringCategorical variableComputingMilieux_MISCELLANEOUSLandmarkbusiness.industrylcsh:Electronics05 social sciencesAffective computingFacial image analysisPattern recognitionMotion history imageMoodSignal ProcessingPattern recognition (psychology)Depression assessment020201 artificial intelligence & image processingArtificial intelligenceF1 scorebusiness050203 business & managementInformation SystemsEURASIP Journal on Image and Video Processing
researchProduct

Automated Characterization of Mouth Activity for Stress and Anxiety Assessment

2016

International audience; Non-verbal information portrayed by human facial expression, apart from emotional cues also encompasses information relevant to psychophysical status. Mouth activities in particular have been found to correlate with signs of several conditions; depressed people smile less, while those in fatigue yawn more. In this paper, we present a semi-automated, robust and efficient algorithm for extracting mouth activity from video recordings based on Eigen-features and template-matching. The algorithm was evaluated for mouth openings and mouth deformations, on a minimum specification dataset of 640x480 resolution and 15 fps. The extracted features were the signals of mouth expa…

[ INFO ] Computer Science [cs]Computer scienceSpeech recognitionFeature extractionautomatic assessmentComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONImage processing02 engineering and technologymouth gesture recognition[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Yawn[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]Correlation03 medical and health sciencesstress0302 clinical medicineRobustness (computer science)Stress (linguistics)[ INFO.INFO-TI ] Computer Science [cs]/Image Processing0202 electrical engineering electronic engineering information engineeringmedicine[INFO]Computer Science [cs][ INFO.INFO-AI ] Computer Science [cs]/Artificial Intelligence [cs.AI]Facial expression[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]anxietyimage processingRecognition[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV][SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicAnxiety020201 artificial intelligence & image processing[ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonicmedicine.symptom030217 neurology & neurosurgery
researchProduct

Designing a framework for assisting depression severity assessment from facial image analysis

2015

Depression is one of the most common mental disorders affecting millions of people worldwide. Developing adjunct tools aiding depression assessment is expected to impact overall health outcomes and treatment cost reduction. To this end, platforms designed for automatic and non-invasive depression assessment could help in detecting signs of the disease on a regular basis, without requiring the physical presence of a mental health professional. Despite the different approaches that can be found in the literature, both in terms of methods and algorithms, a fully satisfactory system for the automatic assessment of depression severity has not been presented as yet. This paper describes a propose…

Facial expressionComputer scienceProcess (engineering)business.industryFeature extractionFeature selectionMachine learningcomputer.software_genreMental healthCurveletArtificial intelligencebusinessHidden Markov modelcomputerDepression (differential diagnoses)2015 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)
researchProduct

Automatic Assessment of Depression Based on Visual Cues: A Systematic Review

2019

International audience; Automatic depression assessment based on visual cues is a rapidly growing research domain. The present exhaustive review of existing approaches as reported in over sixty publications during the last ten years focuses on image processing and machine learning algorithms. Visual manifestations of depression, various procedures used for data collection, and existing datasets are summarized. The review outlines methods and algorithms for visual feature extraction, dimensionality reduction, decision methods for classification and regression approaches, as well as different fusion strategies. A quantitative meta-analysis of reported results, relying on performance metrics r…

MonitoringRating-ScaleRemissionComputer sciencePerformanceFeature extractionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION02 engineering and technologyAdolescentscomputer.software_genreToolsAttentional Bias[SPI]Engineering Sciences [physics]03 medical and health sciences0302 clinical medicineDynamic-AnalysisMoodDiagnosisDisorder[ SPI ] Engineering Sciences [physics]0202 electrical engineering electronic engineering information engineeringaffective computingAffective computingSensory cueComputingMilieux_MISCELLANEOUSVisualizationFacial expressionData collectionContextual image classificationbusiness.industryDimensionality reductionfacial image analysisReliabilityVisualizationEuropeFacial ExpressionHuman-Computer Interactionmachine learningDepression assessment020201 artificial intelligence & image processingArtificial intelligencebusinesscomputer030217 neurology & neurosurgerySoftwareNatural language processingIEEE Transactions on Affective Computing
researchProduct

Glottal Source Features for Automatic Speech-Based Depression Assessment

2017

Depression is one of the most prominent mental disorders, with an increasing rate that makes it the fourth cause of disability worldwide. The field of automated depression assessment has emerged to aid clinicians in the form of a decision support system. Such a system could assist as a pre-screening tool, or even for monitoring high risk populations. Related work most commonly involves multimodal approaches, typically combining audio and visual signals to identify depression presence and/or severity. The current study explores categorical assessment of depression using audio features alone. Specifically, since depression-related vocal characteristics impact the glottal source signal, we exa…

machine learningComputer scienceSpeech recognitionglottal source0202 electrical engineering electronic engineering information engineeringAutomatic speechPhase Distortion Deviation020206 networking & telecommunications020201 artificial intelligence & image processing02 engineering and technologybi-nary classificationDepression (differential diagnoses)Interspeech 2017
researchProduct

Détection automatique des repères visuels associés à la dépression

2018

Depression is the most prevalent mood disorder worldwide having a significant impact on well-being and functionality, and important personal, family and societal effects. The early and accurate detection of signs related to depression could have many benefits for both clinicians and affected individuals. The present work aimed at developing and clinically testing a methodology able to detect visual signs of depression and support clinician decisions.Several analysis pipelines were implemented, focusing on motion representation algorithms, including Local Curvelet Binary Patterns-Three Orthogonal Planes (LCBP-TOP), Local Curvelet Binary Patterns- Pairwise Orthogonal Planes (LCBP-POP), Landma…

DepressionReconnaissance de formesImage Processing[SDV.MHEP.PSM] Life Sciences [q-bio]/Human health and pathology/Psychiatrics and mental health[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Pattern RecognitionTraitement d'image[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV][INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV]Informatique affective[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV][SDV.MHEP.PSM]Life Sciences [q-bio]/Human health and pathology/Psychiatrics and mental healthAffective Computing[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM][INFO.INFO-BI] Computer Science [cs]/Bioinformatics [q-bio.QM]
researchProduct

Détection de la dépression par l’analyse de la géométrie faciale et de la parole

2017

Depression is one of the most prevalent mental disorders, burdening many people world-wide. A system with the potential of serving as a decision support system is proposed, based on novel features extracted from facial expression geometry and speech, by interpreting non-verbal manifestations of depression. The proposed system has been tested both in gender independent and gender based modes, and with different fusion methods. The algorithms were evaluated for several combinations of parameters and classification schemes, on the dataset provided by the Audio/Visual Emotion Challenge of 2013 and 2014. The proposed framework achieved a precision of 94.8% for detecting persons achieving high sc…

[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV][INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV][INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV][ INFO.INFO-TI ] Computer Science [cs]/Image Processing[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV][ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
researchProduct