0000000000372474

AUTHOR

Galina V. Beznoussenko

showing 5 related works from this author

Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome

2020

TP53 missense mutations leading to the expression of mutant p53 oncoproteins are frequent driver events during tumorigenesis. p53 mutants promote tumor growth, metastasis and chemoresistance by affecting fundamental cellular pathways and functions. Here, we demonstrate that p53 mutants modify structure and function of the Golgi apparatus, culminating in the increased release of a pro-malignant secretome by tumor cells and primary fibroblasts from patients with Li-Fraumeni cancer predisposition syndrome. Mechanistically, interacting with the hypoxia responsive factor HIF1α, mutant p53 induces the expression of miR-30d, which in turn causes tubulo-vesiculation of the Golgi apparatus, leading …

0301 basic medicineBiopsyGeneral Physics and AstronomyGolgi ApparatusAnimals Biopsy Breast Neoplasms Cell Line Tumor Cell Transformation Neoplastic Female Fibroblasts Gene Expression Regulation Neoplastic Golgi Apparatus Humans Hypoxia-Inducible Factor 1 alpha Subunit Li-Fraumeni Syndrome Mice MicroRNAs Microtubules Mutation Primary Cell Culture Secretory Vesicles Signal TransductionSkin Tumor Microenvironment Tumor Suppressor Protein p53 Xenograft Model Antitumor Assays02 engineering and technologymedicine.disease_causeCell TransformationMicrotubulesSettore BIO/09 - FisiologiaMetastasisLi-Fraumeni SyndromeMiceTumor MicroenvironmentGolgisecretory machinerySuper-resolution microscopyAnimals; Biopsy; Breast Neoplasms; Cell Line Tumor; Cell Transformation Neoplastic; Female; Fibroblasts; Gene Expression Regulation Neoplastic; Golgi Apparatus; Humans; Hypoxia-Inducible Factor 1 alpha Subunit; Li-Fraumeni Syndrome; Mice; MicroRNAs; Microtubules; Mutation; Primary Cell Culture; Secretory Vesicles; Signal Transduction; Skin; Tumor Microenvironment; Tumor Suppressor Protein p53; Xenograft Model Antitumor Assayslcsh:ScienceSkinMultidisciplinaryTumorChemistrymutant p53QCell migrationMicroRNASecretomics021001 nanoscience & nanotechnologyCell biologyGene Expression Regulation NeoplasticCell Transformation NeoplasticsymbolsFibroblastmiR-30dFemaleHypoxia-Inducible Factor 10210 nano-technologyBreast NeoplasmHumanSignal TransductionCancer microenvironmentStromal cellSecretory VesicleSciencePrimary Cell CultureBreast NeoplasmsMicrotubuleGolgi ApparatuSettore MED/08 - Anatomia Patologicaalpha SubunitGeneral Biochemistry Genetics and Molecular BiologyArticleCell Line03 medical and health sciencessymbols.namesakeCell Line TumormedicineAnimalsHumansSettore MED/05 - Patologia ClinicaSecretionTumor microenvironmentNeoplasticAnimalSecretory VesiclesGeneral ChemistryOncogenesGolgi apparatusHDAC6FibroblastsMicroreviewHypoxia-Inducible Factor 1 alpha SubunitmicroenvironmentXenograft Model Antitumor AssaysMicroRNAs030104 developmental biologyGene Expression RegulationMutationlcsh:QTumor Suppressor Protein p53Carcinogenesis
researchProduct

IRSp53 controls plasma membrane shape and polarized transport at the nascent lumen in epithelial tubules.

2020

It is unclear whether the establishment of apical–basal cell polarity during the generation of epithelial lumens requires molecules acting at the plasma membrane/actin interface. Here, we show that the I-BAR-containing IRSp53 protein controls lumen formation and the positioning of the polarity determinants aPKC and podocalyxin. Molecularly, IRSp53 acts by regulating the localization and activity of the small GTPase RAB35, and by interacting with the actin capping protein EPS8. Using correlative light and electron microscopy, we further show that IRSp53 ensures the shape and continuity of the opposing plasma membrane of two daughter cells, leading to the formation of a single apical lumen. G…

ScienceSialoglycoproteinsQCell MembraneCell PolarityEpithelial CellsNerve Tissue ProteinsApicobasal polaritySettore MED/08 - Anatomia PatologicaActins Cell Membrane Cell Polarity Epithelial Cells Female Morphogenesis Nerve Tissue Proteins Protein Transport Sialoglycoproteins rab GTP-Binding ProteinsActinsArticleProtein Transportrab GTP-Binding ProteinsMorphogenesisHumanslcsh:QFemalelcsh:ScienceNature communications
researchProduct

Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma

2018

Under homeostatic conditions, mature epithelia are locked in a kinetically-silent, jammed state. During wound repair or branching morphogenesis epithelia must unjam and acquire liquid-like properties. These events might be recapitulated in the transition from in situ to invasive cancer stages. How cells control this transition and how biologically relevant it is, however, remains unclear. Recently, we showed that altering RAB5A levels, a master regulator of endosomal trafficking, is sufficient to re-awaken motility in jammed epithelia, through ill-defined, endocytic-sensitive biochemical pathways. Here, we show that RAB5A promotes non-clathrin-dependent internalization of epidermal growth f…

biologyEndosomeChemistrymedia_common.quotation_subjectCellular differentiationMorphogenesisMotilityCell biologybiology.proteinPhosphorylationEpidermal growth factor receptorInternalizationActinmedia_common
researchProduct

IRSp53 shapes the plasma membrane and controls polarized transport at the nascent lumen during epithelial morphogenesis

2019

AbstractEstablishment of apical–basal cell polarity is necessary for generation of luminal and tubular structures during epithelial morphogenesis. Molecules acting at the membrane/ actin interface are expected to be crucial in governing these processes. Here, we show that the I-BAR-containing IRSp53 protein is restricted to the luminal side of epithelial cells of various glandular organs, and is specifically enriched in renal tubules in human, mice, and zebrafish. Using three-dimensional cultures of renal MDCK and intestinal Caco-2 cysts, we show that IRSp53 is recruited early after the first cell division along the forming apical lumen, and is essential for formation of a single lumen and …

Settore MED/04 - Patologia GeneraleCell divisionbiologyChemistryCytoplasmCell polarityMorphogenesisApical membranebiology.organism_classificationZebrafishActinLumen (unit)Cell biology
researchProduct

Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma.

2019

During wound repair, branching morphogenesis and carcinoma dissemination, cellular rearrangements are fostered by a solid-to-liquid transition, known as unjamming. The biomolecular machinery behind unjamming and its pathophysiological relevance remain, however, unclear. Here, we study unjamming in a variety of normal and tumorigenic epithelial two-dimensional (2D) and 3D collectives. Biologically, the increased level of the small GTPase RAB5A sparks unjamming by promoting non-clathrin-dependent internalization of epidermal growth factor receptor that leads to hyperactivation of the kinase ERK1/2 and phosphorylation of the actin nucleator WAVE2. This cascade triggers collective motility effe…

EndosomeCellular differentiationmedia_common.quotation_subjectMotility02 engineering and technologySettore MED/08 - Anatomia Patologica010402 general chemistry01 natural sciencesExtracellular matrixCell MovementCell Line TumorHumansGeneral Materials ScienceSmall GTPaseEpidermal growth factor receptorInternalizationActinmedia_commonCell Proliferationrab5 GTP-Binding ProteinsMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3biologyChemistryMechanical EngineeringCell DifferentiationGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesCell biologyErbB ReceptorsKineticscarcinoma differentiated neoplastic cellsMechanics of Materialsbiology.protein0210 nano-technologyNature materials
researchProduct