0000000000373594

AUTHOR

M. Fleck

showing 7 related works from this author

A 16-parts-per-trillion measurement of the antiproton-to-proton charge–mass ratio

2022

The standard model of particle physics is both incredibly successful and glaringly incomplete. Among the questions left open is the striking imbalance of matter and antimatter in the observable universe, which inspires experiments to compare the fundamental properties of matter/antimatter conjugates with high precision. Our experiments deal with direct investigations of the fundamental properties of protons and antiprotons, performing spectroscopy in advanced cryogenic Penning trap systems. For instance, we previously compared the proton/antiproton magnetic moments with 1.5 parts per billion fractional precision, which improved upon previous best measurements by a factor of greater than 3,0…

MultidisciplinaryPräzisionsexperimente - Abteilung Blaum
researchProduct

LC circuit mediated sympathetic cooling of a proton via image currents

2021

Abstract Efficient cooling of trapped charged particles is essential in many fundamental physics experiments, for high-precision metrology, and for quantum technology. Until now, ion-ion coupling for sympathetic cooling or quantum state control has been limited to ion species with accessible optical transitions or has required close-range Coulomb interactions. To overcome this limitation and further develop scalable quantum control techniques, there has been a sustained desire to extend laser-cooling techniques to particles in macroscopically separated traps, opening quantum control techniques to previously inaccessible particles such as highly charged ions, molecular ions, and antimatter p…

Sympathetic coolingMaterials scienceProtonbusiness.industryOptoelectronicsPhysics::Atomic PhysicsLC circuitbusiness
researchProduct

The ALICE Transition Radiation Detector: Construction, operation, and performance

2018

The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/$c$ in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both …

Physics - Instrumentation and Detectors:Kjerne- og elementærpartikkelfysikk: 431 [VDP]TRPhysics::Instrumentation and DetectorsCOLLIDING BEAM EXPERIMENT; ELECTRON IDENTIFICATION; DRIFT CHAMBERS; TRD PROTOTYPES; ENERGY-LOSS; GEV/C; COLLISIONS; PIONSparticle identification [electron]Ionisation energy loTracking (particle physics)Transition radiation detector ; Multi-wire proportional drift chamber ; Fibre/foam sandwich radiator ; Xenon-based gas mixture ; Tracking ; Ionisation energy loss ; dE/dx ; TR ; Electron-pion identification ; Neural network ; Trigger01 natural sciencesParticle identificationdesign [detector]ALICEDetectors and Experimental Techniquesmomentum resolutionNuclear Experimentphysics.ins-detInstrumentationPhysicsPROTOTYPESLarge Hadron Collidertransition radiation detector; multi-wire proportional drift chamber;; fibre/foam sandwich radiator; Xenon-based gas mixture; tracking;; Ionisation energy loss; dE/dx; TR; electron-pion identification; Neural; network; trigger; COLLIDING BEAM EXPERIMENT; ELECTRON IDENTIFICATION; DRIFT CHAMBERS; TRD; PROTOTYPES; ENERGY-LOSS; GEV/C; COLLISIONS; PIONStrack data analysisTrackingPIONSDetectorVDP::Kjerne- og elementærpartikkelfysikk: 431Instrumentation and Detectors (physics.ins-det)trackingtransition radiation detector:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]ddc:PRIRODNE ZNANOSTI. Fizika.Xenon-based gas mixtureTransition radiation detector:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431GEV/Cmulti-wire proportional drift chamberperformanceParticle physicsNuclear and High Energy PhysicsCOLLISIONSelectron-pion identificationneural networkInstrumentationFOS: Physical sciencesTransition radiation detector; Multi-wire proportional drift chamber; Fibre/foam sandwich radiator; Xenon-based gas mixture; Tracking; Ionisation energy loss; dE/dx; TR; Electron-pion identification; Neural network; Trigger114 Physical sciencesMomentumNuclear physicsionisation energy loss0103 physical sciencesdE/dxDRIFT CHAMBERSdE/dx Electron-pion identification Fibre/foam sandwich radiator Ionisation energy loss Multi-wire proportional drift chamber Neural network TR Tracking Transition radiation detector Trigger Xenon-based gas mixture Nuclear and High Energy Physics Instrumentation.ddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]seuranta010306 general physicsdetector: designNuclear and High Energy PhysicNeuralCOLLIDING BEAM EXPERIMENTTRD PROTOTYPESelectron: particle identificationta114010308 nuclear & particles physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]fibre/foam sandwich radiatortriggercalibrationNATURAL SCIENCES. Physics.Neural networkdE/dx; Electron-pion identification; Fibre/foam sandwich radiator; Ionisation energy loss; Multi-wire proportional drift chamber; Neural network; TR; Tracking; Transition radiation detector; Trigger; Xenon-based gas mixtureTriggerdE/dx; Electron-pion identification; Fibre/foam sandwich radiator; Ionisation energy loss; Multi-wire proportional drift chamber; Neural network; TR; Tracking; Transition radiation detector; Trigger; Xenon-based gas mixture; Nuclear and High Energy Physics; InstrumentationnetworkELECTRON IDENTIFICATIONTRDHigh Energy Physics::ExperimentALICE (propellant)ENERGY-LOSSNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

A high-Q superconducting toroidal medium frequency detection system with a capacitively adjustable frequency range >180 kHz

2022

We describe a newly developed polytetrafluoroethylene/copper capacitor driven by a cryogenic piezoelectric slip-stick stage and demonstrate with the chosen layout cryogenic capacitance tuning of ≈60 pF at ≈10 pF background capacitance. Connected to a highly sensitive superconducting toroidal LC circuit, we demonstrate tuning of the resonant frequency between 345 and 685 kHz, at quality factors Q > 100 000. Connected to a cryogenic ultra low noise amplifier, a frequency tuning range between 520 and 710 kHz is reached, while quality factors Q > 86 000 are achieved. This new device can be used as a versatile image current detector in high-precision Penning-trap experiments or as …

Speichertechnik - Abteilung BlaumDetectors and Experimental TechniquesInstrumentationReview of Scientific Instruments
researchProduct

Constraints on the Coupling between Axionlike Dark Matter and Photons Using an Antiproton Superconducting Tuned Detection Circuit in a Cryogenic Penn…

2021

We constrain the coupling between axionlike particles (ALPs) and photons, measured with the superconducting resonant detection circuit of a cryogenic Penning trap. By searching the noise spectrum of our fixed-frequency resonant circuit for peaks caused by dark matter ALPs converting into photons in the strong magnetic field of the Penning-trap magnet, we are able to constrain the coupling of ALPs with masses around $2.7906-2.7914\,\textrm{neV/c}^2$ to $g_{a\gamma}< 1 \times 10^{-11}\,\textrm{GeV}^{-1}$. This is more than one order of magnitude lower than the best laboratory haloscope and approximately 5 times lower than the CERN axion solar telescope (CAST), setting limits in a mass and cou…

Astrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)PhotonAtomic Physics (physics.atom-ph)Dark matterOther Fields of PhysicsFOS: Physical sciencesGeneral Physics and Astronomyphysics.atom-ph01 natural sciences7. Clean energyPhysics - Atomic PhysicsNuclear physicsHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530Physics::Atomic Physics010306 general physicsParticle Physics - PhenomenologySuperconductivityPhysicshep-phPenning trapCoupling (probability)Magnetic fieldHigh Energy Physics - PhenomenologyAntiprotonastro-ph.COPräzisionsexperimente - Abteilung BlaumCERN Axion Solar TelescopeAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review Letters
researchProduct

Testing CPT Invariance by High-Precision Comparisons of Fundamental Properties of Protons and Antiprotons at BASE

2023

The BASE collaboration at the Antiproton Decelerator facility of CERN compares the fundamental properties of protons and antiprotons using advanced Penning-trap systems. In previous measurement campaigns, we measured the magnetic moments of the proton and the antiproton, reaching (sub-)parts-in-a-billion fractional uncertainty. In the latest campaign, we have compared the proton and antiproton charge-to-mass ratios with a fractional uncertainty of 16 parts in a trillion. In this contribution, we give an overview of the measurement campaign, and detail how its results are used to constrain nine spin-independent coefficients of the Standard-Model Extension in the proton and electron sector.

High Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)FOS: Physical sciencesHigh Energy Physics - Experiment
researchProduct

Sympathetic cooling of a trapped proton mediated by an LC circuit

2021

Efficient cooling of trapped charged particles is essential to many fundamental physics experiments1,2, to high-precision metrology3,4 and to quantum technology5,6. Until now, sympathetic cooling has required close-range Coulomb interactions7,8, but there has been a sustained desire to bring laser-cooling techniques to particles in macroscopically separated traps5,9,10, extending quantum control techniques to previously inaccessible particles such as highly charged ions, molecular ions and antimatter. Here we demonstrate sympathetic cooling of a single proton using laser-cooled Be+ ions in spatially separated Penning traps. The traps are connected by a superconducting LC circuit that enable…

Sympathetic coolingProtonAtomic Physics (physics.atom-ph)FOS: Physical sciencesLC circuit7. Clean energy01 natural sciencesArticle010305 fluids & plasmasIonPhysics - Atomic PhysicsPhysics in General0103 physical sciencesAtomic and molecular physicsPhysics::Atomic Physics010306 general physicsPhysicsQuantum PhysicsMultidisciplinaryCharged particleQuantum technologyAntiprotonAntimatterExotic atoms and moleculesddc:500Atomic physicsPräzisionsexperimente - Abteilung BlaumQuantum Physics (quant-ph)
researchProduct