0000000000373963

AUTHOR

Jari A. K. Hyttinen

showing 4 related works from this author

Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics

2012

In this paper we propose a firing statistics based neuronal network burst detection algorithm for neuronal networks exhibiting highly variable action potential dynamics. Electrical activity of neuronal networks is generally analyzed by the occurrences of spikes and bursts both in time and space. Commonly accepted analysis tools employ burst detection algorithms based on predefined criteria. However, maturing neuronal networks, such as those originating from human embryonic stem cells (hESC), exhibit highly variable network structure and time-varying dynamics. To explore the developing burst/spike activities of such networks, we propose a burst detection algorithm which utilizes the firing s…

Computer scienceNeuroscience (miscellaneous)Interval (mathematics)ta3112lcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineMoving averageHistogramBiological neural networkMethods Articleburst analysislcsh:Neurosciences. Biological psychiatry. Neuropsychiatry030304 developmental biology0303 health sciencesspike trainsQuantitative Biology::Neurons and Cognitionmicroelectrode arrayMEAaction potential burstsdeveloping neuronal networksMultielectrode arrayhuman embryonic stem cellsPower (physics)nervous systemSkewnesshESCsSpike (software development)Biological systemNeuroscience030217 neurology & neurosurgeryNeuroscienceFrontiers in Computational Neuroscience
researchProduct

Network-Wide Adaptive Burst Detection Depicts Neuronal Activity with Improved Accuracy

2017

Neuronal networks are often characterized by their spiking and bursting statistics. Previously, we introducedan adaptive burst analysis methodwhich enhances the analysis power for neuronal networks with highly varying firing dynamics. The adaptation is based on single channels analyzing each element of a network separately. Such kind of analysis was adequate for the assessment of local behavior, where the analysis focuses on the neuronal activity in the vicinity of a single electrode. However, the assessment of the whole network may be hampered, if parts of the network are analyzed using different rules. Here, we test how using multiple channels and measurement time points affect adaptive b…

0301 basic medicineComputer scienceNeuroscience (miscellaneous)Interval (mathematics)Machine learningcomputer.software_genreta3112lcsh:RC321-57103 medical and health sciencesCellular and Molecular NeuroscienceBursting0302 clinical medicineMoving averageHistogramMethodsCluster analysislcsh:Neurosciences. Biological psychiatry. Neuropsychiatryta113network classificationbusiness.industryEmphasis (telecommunications)Pattern recognition217 Medical engineeringlaskennallinen neurotiede113 Computer and information sciencesPower (physics)030104 developmental biologymicroelectrode arraysburst detectionburst synchronySpike (software development)Artificial intelligenceneuronal networksbusinesscomputer030217 neurology & neurosurgeryNeurosciencecomputational neuroscienceFrontiers in Computational Neuroscience
researchProduct

Corrigendum: Spectral Entropy Based Neuronal Network Synchronization Analysis Based on Microelectrode Array Measurements

2020

Physicsrat cortical cellsSpectral entropyspectral entropyNeuroscience (miscellaneous)developing neuronal networksMultielectrode arraylcsh:RC321-571Cellular and Molecular NeurosciencecorrelationSynchronization (computer science)Biological neural networkmouse cortical cellsBiological systemsynchronizationlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryFrontiers in Computational Neuroscience
researchProduct

Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics

2012

In this paper we propose a firing statistics based neuronal network burst detection algorithm for neuronal networks exhibiting highly variable action potential dynamics. Electrical activity of neuronal networks is generally analyzed by the occurrences of spikes and bursts both in time and space. Commonly accepted analysis tools employ burst detection algorithms based on predefined criteria. However, maturing neuronal networks, such as those originating from human embryonic stem cells (hESCs), exhibit highly variable network structure and time-varying dynamics. To explore the developing burst/spike activities of such networks, we propose a burst detection algorithm which utilizes the firing …

purskeanalyysispike trainsQuantitative Biology::Neurons and CognitiontoimintapotentiaalipurskeetMEAmicroelectrode arrayaction potential burstsdeveloping neuronal networksihmisalkion kantasoluhuman embryonic stem cellssoluttoimintapotentiaaliryhmätnervous systemhESCsmikroelektordihilakehittyvät hermoverkotburst analysis
researchProduct