0000000000374629

AUTHOR

Johannes H. Sterba

Measurement of the $^{229}$Th isomer energy with a magnetic micro-calorimeter

We present a measurement of the low-energy (0--60$\,$keV) $\gamma$ ray spectrum produced in the $\alpha$-decay of $^{233}$U using a dedicated cryogenic magnetic micro-calorimeter. The energy resolution of $\sim$$10\,$eV, together with exceptional gain linearity, allow us to measure the energy of the low-lying isomeric state in $^{229}$Th using four complementary evaluation schemes. The most accurate scheme determines the $^{229}$Th isomer energy to be $8.10(17)\,$eV, corresponding to 153.1(37)$\,$nm, superseding in precision previous values based on $\gamma$ spectroscopy, and agreeing with a recent measurement based on internal conversion electrons. We also measure branching ratios of the r…

research product

Gas cell studies of thorium using filament dispensers at IGISOL

Abstract Filament-based dispensers of thorium have been investigated at the IGISOL facility, Jyvaskyla, for potential use as a thorium ion source for future collinear laser spectroscopy experiments. Several different filaments were manufactured in the Institute of Atomic and Subatomic Physics of TU Wien, with 232Th and 229Th prepared on tantalum substrates either by drying thorium nitrate solution or via molecular plating, while adding a layer of zirconium for oxide reduction. The filaments were characterized in a helium-filled gas cell by performing selective and efficient in-gas-cell resonance laser ionization and by analyzing the resulting ion beams by mass spectrometry. Additionally, th…

research product

Measurement of the Th229 Isomer Energy with a Magnetic Microcalorimeter

We present a measurement of the low-energy (0-60 keV) γ-ray spectrum produced in the α decay of ^{233}U using a dedicated cryogenic magnetic microcalorimeter. The energy resolution of ∼10  eV, together with exceptional gain linearity, allows us to determine the energy of the low-lying isomeric state in ^{229}Th using four complementary evaluation schemes. The most precise scheme determines the ^{229}Th isomer energy to be 8.10(17) eV, corresponding to 153.1(32) nm, superseding in precision previous values based on γ spectroscopy, and agreeing with a recent measurement based on internal conversion electrons. We also measure branching ratios of the relevant excited states to be b_{29}=9.3(6)%…

research product