Structure-Guided, Single-Point Modifications in the Phosphinic Dipeptide Structure Yield Highly Potent and Selective Inhibitors of Neutral Aminopeptidases
Seven crystal structures of alanyl aminopeptidase from Neisseria meningitides (the etiological agent of meningitis, NmAPN) complexed with organophosphorus compounds were resolved to determine the optimal inhibitor–enzyme interactions. The enantiomeric phosphonic acid analogs of Leu and hPhe, which correspond to the P1 amino acid residues of well-processed substrates, were used to assess the impact of the absolute configuration and the stereospecific hydrogen bond network formed between the aminophosphonate polar head and the active site residues on the binding affinity. For the hPhe analog, an imperfect stereochemical complementarity could be overcome by incorporating an appropriate P1 side…
A synthetic method for diversification of the P1′ substituent in phosphinic dipeptides as a tool for exploration of the specificity of the S1′ binding pockets of leucine aminopeptidases
Abstract A novel, general, and versatile method of diversification of the P1′ position in phosphinic pseudodipeptides, presumable inhibitors of proteolytic enzymes, was elaborated. The procedure was based on parallel derivatization of the amino group in the suitably protected phosphinate building blocks with appropriate alkyl and aryl halides. This synthetic strategy represents an original approach to phosphinic dipeptide chemistry. Its usefulness was confirmed by obtaining a series of P1′ modified phosphinic dipeptides, inhibitors of cytosolic leucine aminopeptidase, through computer-aided design basing on the structure of homophenylalanyl-phenylalanine analogue (hPheP[CH 2 ]Phe) bound in …