0000000000377162

AUTHOR

Louis Magnin

showing 3 related works from this author

LEFT INVARIANT COMPLEX STRUCTURES ON NILPOTENT SIMPLY CONNECTED INDECOMPOSABLE 6-DIMENSIONAL REAL LIE GROUPS

2007

Integrable complex structures on indecomposable 6-dimensional nilpotent real Lie algebras have been computed in a previous paper, along with normal forms for representatives of the various equivalence classes under the action of the automorphism group. Here we go to the connected simply connected Lie group G0 associated to such a Lie algebra 𝔤. For each normal form J of integrable complex structures on 𝔤, we consider the left invariant complex manifold G = (G0, J) associated to G0 and J. We explicitly compute a global holomorphic chart for G and we write down the multiplication in that chart.

Discrete mathematicsPure mathematicsAdjoint representation of a Lie algebraRepresentation of a Lie groupGeneral MathematicsSimple Lie groupLie algebraAdjoint representationReal formMathematicsLie conformal algebraGraded Lie algebraInternational Journal of Algebra and Computation
researchProduct

COMPLEX STRUCTURES ON INDECOMPOSABLE 6-DIMENSIONAL NILPOTENT REAL LIE ALGEBRAS

2007

We compute all complex structures on indecomposable 6-dimensional real Lie algebras and their equivalence classes. We also give for each of them a global holomorphic chart on the connected simply connected Lie group associated to the real Lie algebra and write down the multiplication in that chart.

General MathematicsSimple Lie groupReal formMathematics - Rings and Algebras17B30Killing formAffine Lie algebraLie conformal algebraGraded Lie algebraAlgebra53C15Adjoint representation of a Lie algebraRepresentation of a Lie groupRings and Algebras (math.RA)FOS: Mathematics17B30;53C15MathematicsInternational Journal of Algebra and Computation
researchProduct

About Leibniz cohomology and deformations of Lie algebras

2011

We compare the second adjoint and trivial Leibniz cohomology spaces of a Lie algebra to the usual ones by a very elementary approach. The comparison gives some conditions, which are easy to verify for a given Lie algebra, for deciding whether it has more Leibniz deformations than just the Lie ones. We also give the complete description of a Leibniz (and Lie) versal deformation of the 4-dimensional diamond Lie algebra, and study the case of its 5-dimensional analogue.

Leibniz algebraPure mathematicsAlgebra and Number TheoryMathematics::Rings and AlgebrasInfinitesimal deformationK-Theory and Homology (math.KT)17A32 17B56 14D15CohomologyMathematics::K-Theory and HomologyLie algebraMathematics - Quantum AlgebraMathematics - K-Theory and HomologyFOS: MathematicsQuantum Algebra (math.QA)Mathematics
researchProduct