0000000000378543

AUTHOR

J. Fernando Barbero G.

showing 3 related works from this author

The combinatorics of the SU(2) black hole entropy in loop quantum gravity

2009

We use the combinatorial and number-theoretical methods developed in previous work by the authors to study black hole entropy in the new proposal put forward by Engle, Noui and Perez. Specifically we give the generating functions relevant for the computation of the entropy and use them to derive its asymptotic behavior including the value of the Immirzi parameter and the coefficient of the logarithmic correction.

General Relativity and Quantum CosmologyFOS: Physical sciencesTheoryofComputation_GENERALGeneral Relativity and Quantum Cosmology (gr-qc)Mathematical Physics (math-ph)General Relativity and Quantum CosmologyMathematical Physics
researchProduct

PRIME NUMBERS, QUANTUM FIELD THEORY AND THE GOLDBACH CONJECTURE

2012

Motivated by the Goldbach conjecture in Number Theory and the abelian bosonization mechanism on a cylindrical two-dimensional spacetime we study the reconstruction of a real scalar field as a product of two real fermion (so-called \textit{prime}) fields whose Fourier expansion exclusively contains prime modes. We undertake the canonical quantization of such prime fields and construct the corresponding Fock space by introducing creation operators $b_{p}^{\dag}$ --labeled by prime numbers $p$-- acting on the vacuum. The analysis of our model, based on the standard rules of quantum field theory and the assumption of the Riemann hypothesis, allow us to prove that the theory is not renormalizabl…

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsPure mathematicsMathematics - Number TheoryCanonical quantizationPrime numberFOS: Physical sciencesFísicaAstronomy and AstrophysicsMathematical Physics (math-ph)Atomic and Molecular Physics and OpticsPrime (order theory)Riemann hypothesissymbols.namesakeNumber theoryHigh Energy Physics - Theory (hep-th)Goldbach's conjectureFOS: MathematicssymbolsNumber Theory (math.NT)Quantum field theoryScalar fieldMathematical PhysicsInternational Journal of Modern Physics A
researchProduct

Combinatorics of the SU(2) black hole entropy in loop quantum gravity

2009

We use the combinatorial and number-theoretical methods developed in previous works by the authors to study black hole entropy in the new proposal put forth by Engle, Noui, and Perez. Specifically, we give the generating functions relevant for the computation of the entropy and use them to derive its asymptotic behavior, including the value of the Immirzi parameter and the coefficient of the logarithmic correction.

General Relativity and Quantum CosmologyMatemáticasTheoryofComputation_GENERALFísica
researchProduct