0000000000378768

AUTHOR

Alper Akay

0000-0001-6825-4443

showing 2 related works from this author

Translational adaptation to heat stress is mediated by RNA 5‐methylcytosine in Caenorhabditis elegans

2021

Abstract Methylation of carbon‐5 of cytosines (m5C) is a post‐transcriptional nucleotide modification of RNA found in all kingdoms of life. While individual m5C‐methyltransferases have been studied, the impact of the global cytosine‐5 methylome on development, homeostasis and stress remains unknown. Here, using Caenorhabditis elegans, we generated the first organism devoid of m5C in RNA, demonstrating that this modification is non‐essential. Using this genetic tool, we determine the localisation and enzymatic specificity of m5C sites in the RNome in vivo. We find that NSUN‐4 acts as a dual rRNA and tRNA methyltransferase in C. elegans mitochondria. In agreement with leucine and proline bein…

Hot TemperatureProlineRibosomeGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesNSUNCytosine0302 clinical medicineRNA modificationsLeucinem5CAnimalsRNA Processing Post-TranscriptionalCaenorhabditis elegansMolecular BiologytRNACaenorhabditis elegansprotein translation030304 developmental biologyGene Editing0303 health sciencesGeneral Immunology and MicrobiologybiologyGeneral NeuroscienceTRNA MethyltransferaseRNATranslation (biology)MethylationArticlesMethyltransferasesRibosomal RNAbiology.organism_classificationRNA BiologyAdaptation Physiological5‐methylcytosineCell biologyMitochondriatranslation efficiencyProtein BiosynthesisTransfer RNA5-MethylcytosineRNACRISPR-Cas SystemsRibosomes030217 neurology & neurosurgeryHeat-Shock ResponseThe EMBO Journal
researchProduct

Translational adaptation to heat stress is mediated by 5-methylcytosine RNA modification in Caenorhabditis elegans

2020

ABSTRACTMethylation of carbon-5 of cytosines (m5C) is a post-transcriptional nucleotide modification of RNA found in all kingdoms of life. While individual m5C-methyltransferases have been studied, the impact of the global cytosine-5 methylome on development, homeostasis and stress remains unknown. Here, usingCaenorhabditis elegans, we generated the first organism devoid of m5C in RNA, demonstrating that this modification is non-essential. We determined the localisation and enzymatic specificity of m5C sites in RNAin vivoand showed that animals devoid of m5C are sensitive to temperature stress. At the molecular level, we showed that loss of m5C specifically impacts decoding of leucine and p…

chemistry.chemical_classificationbiologychemistryDNA methylationTransfer RNARNATranslation (biology)MethylationLeucinebiology.organism_classificationCaenorhabditis elegansAmino acidCell biology
researchProduct