Translational adaptation to heat stress is mediated by RNA 5‐methylcytosine in Caenorhabditis elegans
Abstract Methylation of carbon‐5 of cytosines (m5C) is a post‐transcriptional nucleotide modification of RNA found in all kingdoms of life. While individual m5C‐methyltransferases have been studied, the impact of the global cytosine‐5 methylome on development, homeostasis and stress remains unknown. Here, using Caenorhabditis elegans, we generated the first organism devoid of m5C in RNA, demonstrating that this modification is non‐essential. Using this genetic tool, we determine the localisation and enzymatic specificity of m5C sites in the RNome in vivo. We find that NSUN‐4 acts as a dual rRNA and tRNA methyltransferase in C. elegans mitochondria. In agreement with leucine and proline bein…
Genome analysis of the monoclonal marbled crayfish reveals genetic separation over a short evolutionary timescale
The marbled crayfish (Procambarus virginalis) represents a very recently evolved parthenogenetic freshwater crayfish species that has invaded diverse habitats in Europe and in Madagascar. However, population genetic analyses have been hindered by the homogeneous genetic structure of the population and the lack of suitable tools for data analysis. We have used whole-genome sequencing to characterize reference specimens from various known wild populations. In parallel, we established a whole-genome sequencing data analysis pipeline for the population genetic analysis of nearly monoclonal genomes. Our results provide evidence for systematic genetic differences between geographically separated …
Translational adaptation to heat stress is mediated by 5-methylcytosine RNA modification in Caenorhabditis elegans
ABSTRACTMethylation of carbon-5 of cytosines (m5C) is a post-transcriptional nucleotide modification of RNA found in all kingdoms of life. While individual m5C-methyltransferases have been studied, the impact of the global cytosine-5 methylome on development, homeostasis and stress remains unknown. Here, usingCaenorhabditis elegans, we generated the first organism devoid of m5C in RNA, demonstrating that this modification is non-essential. We determined the localisation and enzymatic specificity of m5C sites in RNAin vivoand showed that animals devoid of m5C are sensitive to temperature stress. At the molecular level, we showed that loss of m5C specifically impacts decoding of leucine and p…
Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs
AbstractCytosine-5 RNA methylation plays an important role in several biologically and pathologically relevant processes. However, owing to methodological limitations, the transcriptome-wide distribution of this mark has remained largely unknown. We previously established RNA bisulfite sequencing as a method for the analysis of RNA cytosine-5 methylation patterns at single-base resolution. More recently, next-generation sequencing has provided opportunities to establish transcriptome-wide maps of this modification. Here we present a computational approach that integrates tailored filtering and data-driven statistical modeling to eliminate many of the artifacts that are known to be associate…