0000000000379382

AUTHOR

Ina Koch

showing 4 related works from this author

The induction of cytochrome P450 3A5 (CYP3A5) in the human liver and intestine is mediated by the xenobiotic sensors pregnane X receptor (PXR) and co…

2004

Induction of cytochrome P450 3A (CYP3A) by xenobiotics may lead to clinically relevant drug interactions. In contrast with other CYP3A family members, studies on the inducibility of CYP3A5 indicate conflicting results. We report the induction of CYP3A5 mRNA in 13 of 16 hepatocyte preparations exposed to rifampin. Furthermore, induction of CYP3A5 mRNA was observed in intestinal biopsies in three of eight probands following exposure to the antibiotic. The highest absolute levels of CYP3A5 transcripts were found following rifampin treatment in hepatocytes and intestines from carriers of CYP3A5*1 alleles. Elucidation of the mechanism involved in CYP3A5 induction revealed that constitutively act…

Receptors SteroidTime FactorsCYP3ABiopsyAmino Acid MotifsReceptors Cytoplasmic and NuclearPharmacology030226 pharmacology & pharmacyBiochemistryTransactivation0302 clinical medicineCytochrome P-450 Enzyme SystemGenes ReporterCytochrome P-450 CYP3AIntestinal MucosaReceptorPromoter Regions GeneticGenes Dominant0303 health sciencesPregnane X receptorPregnane X Receptor3. Good healthmedicine.anatomical_structureLiverHepatocyteRifampinPlasmidsProtein BindingTranscriptional ActivationHeterozygoteGenotypeBiologyTransfectionXenobiotics03 medical and health sciencesmedicineHumansRNA MessengerMolecular BiologyAllelesConstitutive Androstane Receptor030304 developmental biologyMessenger RNACYP3A4Cell BiologyMolecular biologyProtein Structure TertiaryHepatocytesRNADrug metabolismTranscription FactorsThe Journal of biological chemistry
researchProduct

Bioinformatics in theory and application - highlights of the 36th German Conference on Bioinformatics.

2021

GermanEngineeringbusiness.industryClinical BiochemistrylanguageComputational BiologybusinessMolecular BiologyBiochemistryData sciencelanguage.human_languageBiological chemistryReferences
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1

2021

Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…

0301 basic medicineProgrammed cell deathSettore BIO/06AutophagosomeAutolysosome[SDV]Life Sciences [q-bio]lnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Autophagy-Related ProteinsReviewComputational biology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologySettore MED/0403 medical and health sciencesstressChaperone-mediated autophagyddc:570AutophagyLC3AnimalsHumanscancerSettore BIO/10Autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSet (psychology)Molecular Biologyvacuole.phagophore030102 biochemistry & molecular biologyvacuolebusiness.industryInterpretation (philosophy)AutophagyAutophagosomesneurodegenerationCell BiologyfluxMulticellular organismmacroautophagy030104 developmental biologyKnowledge baselysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleBiological AssayLysosomesbusinessBiomarkers[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Autophagy

2021

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…

macroautophagy;autophagyAutophagosome[SDV]Life Sciences [q-bio]canceLC3 macroautophagyautophagosomeneurodegeneration;[SDV.BC]Life Sciences [q-bio]/Cellular BiologyAutophagy AutophagosomeNOstress vacuolestressautophagic processesstrerfluxLC3cancerguidelinesAutophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/06 - Anatomia Comparata E Citologia[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUSMedaka oryzias latipesphagophorevacuoleQHneurodegenerationAutophagosome cancer flux LC3 lysosome macroautophagy neurodegeneration phagophore stress vacuoleautophagy; autophagic processes; guidelines; autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuolefluxmacroautophagystress.lysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/17 - ISTOLOGIARC
researchProduct