0000000000379488

AUTHOR

Hubert Simma

showing 3 related works from this author

Decay constants of B-mesons from non-perturbative HQET with two light dynamical quarks

2014

We present a computation of B-meson decay constants from lattice QCD simulations within the framework of Heavy Quark Effective Theory for the b-quark. The next-to-leading order corrections in the HQET expansion are included non-perturbatively. Based on Nf=2 gauge field ensembles, covering three lattice spacings a (0.08-0.05)fm and pion masses down to 190MeV, a variational method for extracting hadronic matrix elements is used to keep systematic errors under control. In addition we perform a careful autocorrelation analysis in the extrapolation to the continuum and to the physical pion mass limits. Our final results read fB=186(13)MeV, fBs=224(14)MeV and fBs/fB=1.203(65). A comparison with o…

QuarkParticle physicsNuclear and High Energy PhysicsHigh Energy Physics::LatticeHadronLattice field theoryNuclear Theoryhep-latFOS: Physical sciencesLattice QCD01 natural sciencesNuclear physicsRenormalizationPionHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesMeson decayB mesonddc:530010306 general physicsNuclear ExperimentQuantum chromodynamicsPhysicsHeavy Quark Effective Theory010308 nuclear & particles physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]High Energy Physics - Lattice (hep-lat)High Energy Physics::Phenomenologyhep-phLattice QCDHigh Energy Physics - PhenomenologyBottom quarks[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experiment
researchProduct

The b-quark mass from non-perturbative Nf=2 Heavy Quark Effective Theory at O(1/mh)

2014

Abstract We report our final estimate of the b-quark mass from N f = 2 lattice QCD simulations using Heavy Quark Effective Theory non-perturbatively matched to QCD at O ( 1 / m h ) . Treating systematic and statistical errors in a conservative manner, we obtain m ¯ b MS ¯ ( 2 GeV ) = 4.88 ( 15 ) GeV after an extrapolation to the physical point.

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsConservation lawHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyLattice field theoryExtrapolationLattice QCDBottom quarkNuclear physicsHeavy quark effective theoryHigh Energy Physics::ExperimentNon-perturbativePhysics Letters B
researchProduct

B-physics from non-perturbatively renormalized HQET in two-flavour lattice QCD.

2012

We report on the ALPHA Collaboration's lattice B-physics programme based on N_f=2 O(a) improved Wilson fermions and HQET, including all NLO effects in the inverse heavy quark mass, as well as non-perturbative renormalization and matching, to fix the parameters of the effective theory. Our simulations in large physical volume cover 3 lattice spacings a ~ (0.08-0.05) fm and pion masses down to 190 MeV to control continuum and chiral extrapolations. We present the status of results for the b-quark mass and the B_(s)-meson decay constants, f_B and f_{B_s}.

QuarkNuclear and High Energy PhysicsParticle physicsMesonHigh Energy Physics::LatticeFOS: Physical sciences01 natural sciencesRenormalizationHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticePionLattice (order)0103 physical sciencesEffective field theoryNuclear Experiment010306 general physicsPhysics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyParticle Physics - LatticeFermionLattice QCDAtomic and Molecular Physics and OpticsHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experiment
researchProduct