0000000000379495

AUTHOR

Clemente Bretti

showing 6 related works from this author

Risedronate complexes with Mg2+, Zn2+, Pb2+, and Cu2+: Species thermodynamics and sequestering ability in NaCl(aq) at different ionic strengths and a…

2021

Abstract In this paper, potentiometry and calorimetry were used to determine the thermodynamics of interaction between risedronate and four bivalent metal cations, namely: Mg2+, Zn2+, Pb2+, and Cu2+ in aqueous NaCl solutions at different ionic strengths and at T = 298.15 K. The data analysis allowed us to ascertain that the main species formed were the MLH2, MLH, ML and M2L; however scarcely soluble species precipitated at acidic pH values, between 4 and 7 depending on the metal cation involved, probably due to the formation of the neutral M2L(s) species. Comparison of the stability constants with other similar ligands suggests that metal complexation occurs through the phosphonate with an …

Sequestering abilityAqueous solutionLigandIonic bondingThermodynamicsCalorimetryRisedronic acidCondensed Matter PhysicsPhosphonateAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsMetalchemistry.chemical_compoundchemistryIonic strengthSolution thermodynamicsvisual_artPotentiometryMaterials Chemistryvisual_art.visual_art_mediumMoleculeSettore CHIM/01 - Chimica AnaliticaChelationPhysical and Theoretical ChemistrySpectroscopyJournal of Molecular Liquids
researchProduct

Speciation of dimethyltin(IV) – and trimethyltin(IV) – carbocysteinate and – glutamate systems in aqueous media

2008

The formation of complex species in the dimethyltin(IV) and trimethyltin(IV)-carboxymethyl-L-cysteinate (carbocysteinate) systems in NaClaq, at different ionic strengths, and in a multicomponent Na+, K+, Ca2+, Mg2+, Cl- and SO42- medium representative of the seawater major composition, is discussed. Experimental results give evidence for the formation of the following species (L¼carbocysteinate): [(CH3)2Sn(L)]0, [(CH3)2Sn(HL)]+, [(CH3)2Sn(OH)(L)]-, [(CH3)2Sn(OH)2(L)]2- in the DMT–CCYS system, and [(CH3)3Sn(HL)]0, [(CH3)3Sn(L)]- and [(CH3)3Sn(OH)(L)]2- in the TMT-CCYS system. The ionic strength dependence of formation constants was taken into account by an extended Debye Huckel type equation…

organotin(IV) compounds; carboxymethyl-L-cysteinate; glutamateChemical Health and SafetyAqueous mediumChemistrydependence on ionic strength of formation constantHealth Toxicology and Mutagenesismedia_common.quotation_subjectInorganic chemistryComplex formationorganotin(IV) compoundGlutamate receptormixed ionic mediaIonic bondingglutamateToxicologycarboxymethyl-L-cysteinateSpeciationspeciationcomplex formationOrganic chemistrySettore CHIM/01 - Chimica Analiticamedia_commonChemical Speciation & Bioavailability
researchProduct

Thermodynamics of Proton Binding of Halloysite Nanotubes

2016

In this paper, new information on physical and chemical properties of the widely used nanostructured Halloysite mineral are reported. Given that the Halloysite has a tubular structure formed by a variable number of wrapped layers containing Si-OH and Al-OH groups, their proton binding affinity was measured at different ionic strengths and ionic media by means of potentiometric measurements in heterogeneous phase. One protonation constant for the Si-OH groups and two for the Al-OH groups were determined. The protonation constant values increase with increasing of the ionic strength in all the ionic media. This suggests that the presence of a background electrolyte stabilizes the protonated s…

Proton bindingInorganic chemistrySurfaces Coatings and FilmIonic bondingProtonation02 engineering and technologyElectrolyteengineering.material010402 general chemistry01 natural sciencesHalloysiteIonSettore CHIM/01 - Chimica AnaliticaSurface chargePhysical and Theoretical ChemistrySettore CHIM/02 - Chimica FisicaChemistryElectronic Optical and Magnetic Material021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsEnergy (all)General EnergyIonic strengthengineering0210 nano-technologyACID-BASE PROPERTIES; MOLECULAR-WEIGHT LIGANDS; CLAY NANOTUBES; AQUEOUS-SOLUTION; IONIC-STRENGTH; ACTIVITY-COEFFICIENTS; WEAK COMPLEXES; FORMATION-CONSTANTS; CONTROLLED-RELEASE; SUSTAINED-RELEASE
researchProduct

Modeling S-carboxymethyl-L-cysteine protonation and activity coefficients in sodium and tetramethylammonium chloride aqueous solutions by SIT and Pit…

2007

Solubility and acid–base properties of S-carboxymethyl-l-cysteine (carbocysteine, ccys) in NaClaq and tetramethylammonium chloride, (CH3)4NClaq ,a tt =2 5 ◦ C and at different ionic strengths were investigated. Solubility was studied at 1.0 ≤ I (mol L −1 ) ≤ 5.0 for NaClaq and 1.0 ≤ I (mol L −1 ) ≤ 3.0 for (CH3)4NClaq, while potentiometric measurements (by ISE-H + , glass electrode) were performed at 0.1 ≤ I (mol L −1 ) ≤ 5.0 for NaClaq and 0.5 ≤ I (mol L −1 ) ≤ 3.0 for (CH3)4NClaq. Solubility data allowed us to determine Setschenow constants and activity coefficients of neutral carbocysteine (H2ccys). Dependence on ionic strength and ionic medium of protonation constants and activity coeff…

Activity coefficientChemistryGeneral Chemical EngineeringPotentiometric titrationInorganic chemistryAnalytical chemistryGeneral Physics and AstronomyProtonationchemistry.chemical_compoundSpecific ion interaction theoryIonic strengthTetramethylammonium chloridePitzer equationsPhysical and Theoretical ChemistrySolubilityCarbocysteine; Solubility; Protonation; Activity coefficients; Dependence on medium and ionic strength
researchProduct

Polycarboxylic acids in sea water: acid–base properties, solubilities, activity coefficients, and complex formation constants at different salinities

2016

This paper reports the results of the investigations carried out in synthetic sea water at different salinities for different classes of polycarboxylic acids. The investigations can be summarized as follows: (a) Determination of the protonation constants in such multicomponent solution in a salinity range 15 ≤ S ≤ 45, at t = 25 °C, for the linear dicarboxylic acids HOOC-(CH2) n –COOH (0 ≤ n ≤ 8), and aromatic polycarboxylic acids (o-phthalic and 1,2,4-benzenetricarboxylic acids). For malonic, succinic, 1,2,3-benzenetricarboxylic, and 1,2,3,4-benzenetetracarboxylic acids, investigations were also carried out at t = 10 and 37 °C; (b) Determination of the total and intrinsic solubility (S T an…

Activity coefficientBase (chemistry)Inorganic chemistryChemistry (all).Salt (chemistry)ProtonationProtonation02 engineering and technologyCalorimetry010402 general chemistry01 natural sciencesMetal complexDeprotonationProtonation Solubility Synthetic sea water Salt effect Metal complex Calorimetry020401 chemical engineeringSalt effectSettore CHIM/01 - Chimica Analitica0204 chemical engineeringSolubilitychemistry.chemical_classificationAqueous solutionGeneral ChemistrySynthetic sea water0104 chemical sciencesSolubilitychemistrySpecific ion interaction theoryMonatshefte für Chemie - Chemical Monthly
researchProduct

Hydrolysis of organotin compounds at high concentration

2008

OrganotinhydrolysisSettore CHIM/01 - Chimica Analitica
researchProduct