0000000000379516

AUTHOR

Ernesto Mininno

Disturbed Exploitation compact Differential Evolution for Limited Memory Optimization Problems

This paper proposes a novel and unconventional Memetic Computing approach for solving continuous optimization problems characterized by memory limitations. The proposed algorithm, unlike employing an explorative evolutionary framework and a set of local search algorithms, employs multiple exploitative search within the main framework and performs a multiple step global search by means of a randomized perturbation of the virtual population corresponding to a periodical randomization of the search for the exploitative operators. The proposed Memetic Computing approach is based on a populationless (compact) evolutionary framework which, instead of processing a population of solutions, handles …

research product

Super-fit and population size reduction in compact Differential Evolution

Although Differential Evolution is an efficient and versatile optimizer, it has a wide margin of improvement. During the latest years much effort of computer scientists studying Differential Evolution has been oriented towards the improvement of the algorithmic paradigm by adding and modifying components. In particular, two modifications lead to important improvements to the original algorithmic performance. The first is the super-fit mechanism, that is the injection at the beginning of the optimization process of a solution previously improved by another algorithm. The second is the progressive reduction of the population size during the evolution of the population. Recently, the algorithm…

research product

Ockham's Razor in Memetic Computing: Three Stage Optimal Memetic Exploration

Memetic computing is a subject in computer science which considers complex structures as the combination of simple agents, memes, whose evolutionary interactions lead to intelligent structures capable of problem-solving. This paper focuses on memetic computing optimization algorithms and proposes a counter-tendency approach for algorithmic design. Research in the field tends to go in the direction of improving existing algorithms by combining different methods or through the formulation of more complicated structures. Contrary to this trend, we instead focus on simplicity, proposing a structurally simple algorithm with emphasis on processing only one solution at a time. The proposed algorit…

research product

Ensemble strategies in Compact Differential Evolution

Differential Evolution is a population based stochastic algorithm with less number of parameters to tune. However, the performance of DE is sensitive to the mutation and crossover strategies and their associated parameters. To obtain optimal performance, DE requires time consuming trial and error parameter tuning. To overcome the computationally expensive parameter tuning different adaptive/self-adaptive techniques have been proposed. Recently the idea of ensemble strategies in DE has been proposed and favorably compared with some of the state-of-the-art self-adaptive techniques. Compact Differential Evolution (cDE) is modified version of DE algorithm which can be effectively used to solve …

research product

Memetic Compact Differential Evolution for Cartesian Robot Control

This article deals with optimization problems to be solved in the absence of a full power computer device. The goal is to solve a complex optimization problem by using a control card related to portable devices, e.g. for the control of commercial robots. In order to handle this class of optimization problems, a novel Memetic Computing approach is presented. The proposed algorithm employs a Differential Evolution framework which instead of processing an actual population of candidate solutions, makes use of a statistical representation of the population which evolves over time. In addition, the framework uses a stochastic local search algorithm which attempts to enhance the performance of th…

research product