0000000000380630

AUTHOR

Carole Ecoffet

showing 2 related works from this author

Quantitative analysis of localized surface plasmons based on molecular probing

2010

International audience; We report on the quantitative characterization of the plasmonic optical near-field of a single silver nanoparticle. Our approach relies on nanoscale molecular molding of the confined electromagnetic field by photoactivated molecules. We were able to directly image the dipolar profile of the near-field distribution with a resolution better than 10 nm and to quantify the near-field depth and its enhancement factor. A single nanoparticle spectral signature was also assessed. This quantitative characterization constitutes a prerequisite for developing nanophotonic applications.

Materials scienceNanophotonicsGeneral Physics and AstronomyNanoparticlePhysics::OpticsNanotechnologynanoscale photopolymerization02 engineering and technology010402 general chemistry01 natural sciencesSilver nanoparticlenear-field opticsGeneral Materials Sciencemolecular probesPlasmonComputingMilieux_MISCELLANEOUSSpectral signaturelocalized surface plasmonquantitative analysisNear-field opticsGeneral Engineering[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology0104 chemical sciencesCharacterization (materials science)[ CHIM.POLY ] Chemical Sciences/Polymers[CHIM.POLY]Chemical Sciences/Polymers[ CHIM.MATE ] Chemical Sciences/Material chemistry[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic0210 nano-technologyLocalized surface plasmon
researchProduct

Plasmon-based free-radical photopolymerization : effect of diffusion on nanolithography processes

2011

This Article interrogates the mechanisms responsible for nanoscale photopolymerization induced by confined and enhanced electromagnetic fields. Surface plasmon dipolar resonance of individual Ag nanoparticles was used as an optical near-field source to locally trigger the reaction of a photopolymerizable formulation. Laser excitation of the nanoparticles embedded in the formulation reproducibly generates polymer features with typical dimensions ranging from 2 nm to a few tens of nanometer. We have determined the physicochemical parameters and mechanisms controlling the spatial extent of the photopolymerization process. We found that the diffusion of the dye is the main process limiting the …

Physics::OpticsNanoparticleNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesBiochemistryCatalysisColloid and Surface ChemistryNanoscopic scaleMicroscale chemistryPlasmonComputingMilieux_MISCELLANEOUSChemistrySurface plasmonGeneral Chemistry[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology0104 chemical sciences[ CHIM.POLY ] Chemical Sciences/PolymersNanolithographyPhotopolymer[CHIM.POLY]Chemical Sciences/PolymersPolymerization[ CHIM.MATE ] Chemical Sciences/Material chemistry0210 nano-technology
researchProduct