0000000000383232

AUTHOR

Elaheh Ghorbani

0000-0002-4037-1602

Incorporation of Li dopant into Cu2ZnSnSe4 photovoltaic absorber: hybrid-functional calculations

We have studied the formation of Li extrinsic defects in CuZnSnSe by first-principles hybrid functional calculations. Li atoms in the Cu site (Li) and Li atoms in the Se site (Li) are the most and the least stable point defect, respectively. The formation energies of two Li interstitial defects with different numbers of nearest neighbors are the same. These interstitial point defects act as a donor but do not create gap states. Formation of the acceptor point defects (Li and Li) is less likely in p-type CuZnSnSe compared with n-type CuZnSnSe. In contrast to Li which does not create gap states, the formation of Li creates two charge transition levels in the middle of the bandgap which might …

research product

Insights into Intrinsic Defects and the Incorporation of Na and K in the Cu2ZnSnSe4 Thin-Film Solar Cell Material from Hybrid-Functional Calculations

We have performed density functional theory calculations using the HSE06 hybrid functional to investigate the energetics, atomic, and electronic structure of intrinsic defects as well as Na and K impurities in the kesterite structure of the Cu2ZnSnSe4 (CZTSe) solar cell material. We found that both Na and K atoms prefer to be incorporated into this material as substitutional defects in the Cu sublattice. At this site highly stable (Na–Na), (K–K), and (Na–K) dumbbells can form. While Na interstitial defects are stable in CZTSe, the formation of K interstitial defects is unlikely. In general, the calculated formation energies for Na-related defects are always lower compared to their K-related…

research product

Hybrid-Functional Calculations on the Incorporation of Na and K Impurities into the CuInSe 2 and CuIn 5 Se 8 Solar-Cell Materials

International audience; We have studied the energetics, atomic, and electronic structure of Na and K point defects, as well as the (Na-Na), (K-K), and (Na-K) dumbbells in CuInSe2 and CuIn5Se8 solar cell materials by hybrid functional calculations. We found that although Na and K behaves somewhat similar; there is a qualitative difference between the inclusion of Na and K impurities. Namely, Na will be mostly incorporated into CuInSe2 and CuIn5Se8 either as an interstitial defect coordinated by cations, or two Na impurities will form (Na-Na) dumbbells in the Cu sublattice. In contrast to Na, K impurities are less likely to form interstitial defects. Instead, it is more preferable to accommod…

research product

Hybrid functional calculations on the Na and K impurities in substitutional and interstitial positions in Cu2ZnSnSe4

We studied the energetics, atomic and electronic structure of Na and K extrinsic defects in Cu2ZnSnSe4 by ab initio calculations using the HSE06 hybrid functional. Our results show that (i) among all substitutional positions, the Cu-site is the most favorable position for both Na and K. (ii) The tetrahedrally coordinated interstitial site has a lower formation energy than the octahedrally coordinated interstitial site. (iii) Based on the band structure calculations we can conclude, Se-related defects lead to the formation of defect states within the band gap.

research product