0000000000385328
AUTHOR
Paolo Bonicatto
showing 1 related works from this author
Indecomposable sets of finite perimeter in doubling metric measure spaces
2020
We study a measure-theoretic notion of connectedness for sets of finite perimeter in the setting of doubling metric measure spaces supporting a weak $(1,1)$-Poincar\'{e} inequality. The two main results we obtain are a decomposition theorem into indecomposable sets and a characterisation of extreme points in the space of BV functions. In both cases, the proof we propose requires an additional assumption on the space, which is called isotropicity and concerns the Hausdorff-type representation of the perimeter measure.