0000000000385382

AUTHOR

Guy Schmerber

showing 2 related works from this author

Thickness-dependent electron momentum relaxation times in iron films

2020

Terahertz time-domain conductivity measurements in 2 to 100 nm thick iron films resolve the femtosecond time delay between applied electric fields and resulting currents. This current response time decreases from 29 fs for thickest films to 7 fs for the thinnest films. The macroscopic response time is not strictly proportional to the conductivity. This excludes the existence of a single relaxation time universal for all conduction electrons. We must assume a distribution of microscopic momentum relaxation times. The macroscopic response time depends on average and variation of this distribution; the observed deviation between response time and conductivity scaling corresponds to the scaling…

Materials sciencePhysics and Astronomy (miscellaneous)FOS: Physical sciences02 engineering and technologyElectronConductivity01 natural sciencesElectric field0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Scaling010302 applied physicsMomentum (technical analysis)Condensed Matter - Materials ScienceCondensed matter physics[PHYS.PHYS]Physics [physics]/Physics [physics]Condensed Matter - Mesoscale and Nanoscale PhysicsRelaxation (NMR)Materials Science (cond-mat.mtrl-sci)Physik (inkl. Astronomie)021001 nanoscience & nanotechnologyThermal conductionCondensed Matter - Other Condensed MatterFemtosecond0210 nano-technologyOther Condensed Matter (cond-mat.other)
researchProduct

Hysteresis and change of transition temperature in thin films of Fe{[Me2Pyrz]3BH}2, a new sublimable spin-crossover molecule.

2015

Thin films of the spin-crossover (SCO) molecule Fe{[Me(2)Pyrz](3)BH}(2) (Fe-pyrz) were sublimed on Si/SiO2 and quartz substrates, and their properties investigated by X-ray absorption and photo-emission spectroscopies, optical absorption, atomic force microscopy, and superconducting quantum interference device. Contrary to the previously studied Fe(phen)(2)(NCS)(2), the films are not smooth but granular. The thin films qualitatively retain the typical SCO properties of the powder sample (SCO, thermal hysteresis, soft X-ray induced excited spin-state trapping, and light induced excited spin-state trapping) but present intriguing variations even in micrometer-thick films: the transition tempe…

Materials scienceCondensed matter physicsBand gapTransition temperatureAucunSpin transitionAnalytical chemistryGeneral Physics and AstronomyAtmospheric temperature rangeSurface energyCondensed Matter::Materials ScienceSpin crossoverCondensed Matter::SuperconductivityExcited statePhysical and Theoretical ChemistryThin filmThe Journal of chemical physics
researchProduct