0000000000387581
AUTHOR
Sunil Varughese
Photophysical and electroluminescence properties of bis(2′,6′-difluoro-2,3′-bipyridinato-N,C4′)iridium(picolinate) complexes: effect of electron-withdrawing and electron-donating group substituents at the 4′ position of the pyridyl moiety of the cyclometalated ligand
Herein, we have synthesized a series of 2′,6′-difluoro-2,3′-bipyridine cyclometalating ligands by substituting electron-withdrawing (–CHO, –CF3, and –CN) and electron-donating (–OMe and –NMe2) groups at the 4′ position of the pyridyl moiety and utilized them for the construction of five new iridium(III) complexes (Ir1–Ir5) in the presence of picolinate as an ancillary ligand. The photophysical properties of the developed iridium(III) compounds were investigated with a view to understand the substituent effects. The strong electron-withdrawing (–CN) group containing the iridium(III) compound (Ir3) exhibits highly efficient genuine green phosphorescence (λmax = 508 nm) at room temperature in …
An easy access to fused chromanones via rhodium catalyzed oxidative coupling of salicylaldehydes with heterobicyclic olefins
Abstract Herein we describe a detailed study on the rhodium catalyzed oxidative coupling of salicylaldehydes with heterobicyclic olefins such as diazabicyclic olefins and urea-derived bicyclic olefins. The developed method provides an ideal route to fused chromanone systems in a single synthetic step. Moreover, the scope of this methodology was extended to different oxa/aza-bridged bicyclic urea derivatives.
An easy access to fused chromanones via rhodium catalyzed oxidative coupling of salicylaldehydes with heterobicyclic olefins
Herein we describe a detailed study on the rhodium catalyzed oxidative coupling of salicylaldehydes with heterobicyclic olefins such as diazabicyclic olefins and urea-derived bicyclic olefins. The developed method provides an ideal route to fused chromanone systems in a single synthetic step. Moreover, the scope of this methodology was extended to different oxa/aza-bridged bicyclic urea derivatives. peerReviewed
ChemInform Abstract: Rhodium(III)-Catalyzed Ring-Opening of Strained Olefins Through C-H Activation of O-Acetyl Ketoximes: An Efficient Synthesis of trans-Functionalized Cyclopentenes and Spiro[2.4]heptenes.
An efficient strategy for the stereoselective synthesis of functionalized cyclopentenes and spiro[2.4]heptenes from strained olefins via C–H activation of aryl ketone O-acetyl ketoximes using [RhCl2Cp∗]2 catalyst is described. The results revealed that a wide range of readily accessible aryl and heteroaryl ketoximes are compatible in this method for the ring opening of bicyclic and spirotricyclic olefins.
Rhodium(III)-catalyzed ring-opening of strained olefins through C–H activation of O-acetyl ketoximes: an efficient synthesis of trans-functionalized cyclopentenes and spiro[2.4]heptenes
An efficient strategy for the stereoselective synthesis of functionalized cyclopentenes and spiro[2.4]heptenes from strained olefins via C–H activation of aryl ketone O-acetyl ketoximes using [RhCl2Cp∗]2 catalyst is described. The results revealed that a wide range of readily accessible aryl and heteroaryl ketoximes are compatible in this method for the ring opening of bicyclic and spirotricyclic olefins.
ChemInform Abstract: An Easy Access to Fused Chromanones via Rhodium Catalyzed Oxidative Coupling of Salicylaldehydes with Heterobicyclic Olefins.
Diazabicyclic and urea-derived bicyclic olefins react with salicylaldehydes to produce various types of fused chromanone systems of biological interest in a single step (mechanism).
CCDC 952087: Experimental Crystal Structure Determination
Related Article: E. Jijy, Praveen Prakash, M. Shimi, S. Saranya, P. Preethanuj, Petri M. Pihko, Sunil Varughese, K.V. Radhakrishnan|2013|Tetrahedron Lett.|54|7127|doi:10.1016/j.tetlet.2013.10.089
CCDC 1449575: Experimental Crystal Structure Determination
Related Article: Ajesh Vijayan, T.V. Baiju, E. Jijy, Praveen Prakash, M. Shimi, Nayana Joseph, Petri M. Pihko, Sunil Varughese, K.V. Radhakrishnan|2016|Tetrahedron|72|4007|doi:10.1016/j.tet.2016.05.031