0000000000389874
AUTHOR
Flavio Giannetti
Global Linear Stability Analysis of the Flow Around a Superhydrophobic Circular Cylinder
International audience; Over the last few years, superhydrophobic (SH) surfaces have been receiving an increasing attention in many scientific areas by virtue of their ability to enhance flow slip past solid walls and reduce the skin-friction drag. In the present study, a global linear-stability analysis is employed to investigate the influence of the SH-induced slip velocity on the primary instability of the 2D flow past a circular cylinder. The flow regions playing the role of 'wavemaker' are identified by considering the structural sensitivity of the unstable mode, thus highlighting the effect of slip on the global instability of the considered flow. In addition, a sensitivity analysis t…
Towards a quantitative comparison between global and local stability analysis
A methodology is proposed here to estimate the stability characteristics of bluff-body wakes using local analysis under the assumption of weakly non-parallel flows. In this connection, a generalisation of the classic spatio-temporal stability analysis for fully three-dimensional flows is first described. Secondly, an additional higher-order correction term with respect to the common saddle-point global frequency estimation is included in the analysis. The proposed method is first validated for the case of the flow past a circular cylinder and then applied to two fully three-dimensional flows: the boundary layer flow over a wall-mounted hemispherical body and the wake flow past a fixed spher…
Boundary-layer Flows Past an Hemispherical Roughness Element: DNS, Global Stability and Sensitivity Analysis
Abstract We investigate the full three-dimensional instability mechanism arising in the wake of an hemispherical roughness element immersed in a laminar Blasius boundary layer. The inherent three-dimensional flow pattern beyond the critical Reynolds number is characterized by coherent vortical structures called hairpin vortices. Direct numerical simulation is used to analyze the formation and the shedding of hairpin packets inside the shear layer. The first bifurcation characteristics are investigated by global stability tools. We show the spatial structure of the linear direct and adjoint global eigenmodes of the linearized Navier-Stokes operator and use structural sensitivity analysis to …