0000000000390202

AUTHOR

Janine Schlöder

showing 3 related works from this author

Bioconjugation of Small Molecules to RNA Impedes Its Recognition by Toll-Like Receptor 7

2017

A fundamental mechanism of the innate immune system is the recognition, via extra- and intracellular pattern recognition receptors, of pathogen-associated molecular patterns. A prominent example is represented by foreign nucleic acids, triggering the activation of several signaling pathways. Among these, the endosomal toll-like receptor 7 (TLR7) is known to be activated by single stranded RNA (ssRNA), which can be specifically influenced through elements of sequence structure and posttranscriptional modifications. Furthermore, small molecules TLR7 agonists (smTLRa) are applied as boosting adjuvants in vaccination processes. In this context, covalent conjugations between adjuvant and vaccine…

0301 basic medicineMessenger RNAGene knockdownToll-like receptormRNAImmunologyPattern recognition receptorRNATLR7BiologyMolecular biologyCell biology03 medical and health sciencessmall molecules030104 developmental biologysiRNAclick chemistryNucleic acidImmunology and Allergytoll-like receptorimmunostimulationbioconjugateSingle-Stranded RNAOriginal ResearchFrontiers in Immunology
researchProduct

Dendritic Mesoporous Silica Nanoparticles for pH-Stimuli-Responsive Drug Delivery of TNF-Alpha

2017

Tumor necrosis factor-alpha (TNF-α) is a pleiotropic immune stimulatory cytokine and natural endotoxin that can induce necrosis and regression in solid tumors. However, systemic administration of TNF-α is not feasible due to its short half-life and acute toxicity, preventing its widespread use in cancer treatment. Dendritic mesoporous silica nanoparticles (DMSN) are used coated with a pH-responsive block copolymer gate system combining charged hyperbranched polyethylenimine and nonionic hydrophilic polyethylenglycol to encapsulate TNF-α and deliver it into various cancer cell lines and dendritic cells. Half-maximal effective concentration (EC50 ) for loaded TNF-α is reduced by more than two…

Materials sciencemedicine.medical_treatmentBiomedical EngineeringPharmaceutical Science02 engineering and technology010402 general chemistry01 natural sciencesProinflammatory cytokineBiomaterialschemistry.chemical_compoundDrug Delivery SystemsIn vivoCell Line TumorNeoplasmsmedicineHumansPolyethylenimineDose-Response Relationship DrugTumor Necrosis Factor-alphaCell CycleCell cycleMesoporous silicaSilicon Dioxide021001 nanoscience & nanotechnology0104 chemical sciencesCytokinechemistryImmunologyDrug deliveryBiophysicsNanoparticlesTumor necrosis factor alpha0210 nano-technologyPorosityAdvanced Healthcare Materials
researchProduct

Drug Delivery: Dendritic Mesoporous Silica Nanoparticles for pH-Stimuli-Responsive Drug Delivery of TNF-Alpha (Adv. Healthcare Mater. 13/2017)

2017

BiomaterialsMaterials scienceStimuli responsiveDrug deliveryBiomedical EngineeringPharmaceutical ScienceNanoparticleTumor necrosis factor alphaNanotechnologyMesoporous silicaPharmacologyProinflammatory cytokineAdvanced Healthcare Materials
researchProduct