0000000000391825

AUTHOR

George Psihoyios

showing 2 related works from this author

Multiscale Particle Method in Solving Partial Differential Equations

2007

A novel approach to meshfree particle methods based on multiresolution analysis is presented. The aim is to obtain numerical solutions for partial differential equations by avoiding the mesh generation and by employing a set of particles arbitrarily placed in problem domain. The elimination of the mesh combined with the properties of dilation and translation of scaling and wavelets functions is particularly suitable for problems governed by hyperbolic partial differential equations with large deformations and high gradients.

Multiresolution analysiMethod of linesMathematical analysisFirst-order partial differential equationExponential integratorSPH methodStochastic partial differential equationSettore ING-IND/31 - ElettrotecnicaSettore MAT/08 - Analisi NumericaMultigrid methodMethod of characteristicsMeshfree particle methodHyperbolic partial differential equationNumerical partial differential equationsMathematicsAIP Conference Proceedings
researchProduct

Monotony Based Imaging in EIT

2010

We consider the problem of determining conductivity anomalies inside a body from voltage‐current measurements on its surface. By combining the monotonicity method of Tamburrino and Rubinacci with the concept of localized potentials, we derive a new imaging method that is capable of reconstructing the exact (outer) shape of the anomalies. We furthermore show that the method can be implemented without solving any non‐homogeneous forward problems and show a first numerical result.

Surface (mathematics)Partial differential equationMathematical analysisMonotonic functionBoundary value problemOperator theoryConductivityElectrical impedance tomographyMathematicsMathematical OperatorsAIP Conference Proceedings
researchProduct