Arabic Named Entity Recognition: A Feature-Driven Study
The named entity recognition task aims at identifying and classifying named entities within an open-domain text. This task has been garnering significant attention recently as it has been shown to help improve the performance of many natural language processing applications. In this paper, we investigate the impact of using different sets of features in three discriminative machine learning frameworks, namely, support vector machines, maximum entropy and conditional random fields for the task of named entity recognition. Our language of interest is Arabic. We explore lexical, contextual and morphological features and nine data-sets of different genres and annotations. We measure the impact …