0000000000395436

AUTHOR

Xiaohua Lu

showing 5 related works from this author

Cytotoxicity of 4-hydroxy-N-(naphthalen-1-yl)-2-oxo-2H-chromene-3-carboxamide in multidrug-resistant cancer cells through activation of PERK/eIF2α/AT…

2021

After decades of research, multidrug resistance (MDR) remains a huge challenge in cancer treatment. In this study, the cytotoxic of 4-hydroxy-N-(naphthalen-1-yl)-2-oxo-2H-chromene-3-carboxamide (MCC1734) has been investigated towards multidrug-resistant cancer cell lines. MCC1734 exerted cytotoxicity on cell lines expressing different mechanisms of drug resistance (P-glycoprotein, BCRP, ABCB5, EGFR, p53 knockout) to a different extent. Interestingly, sensitive CCRF-CEM cells and multidrug-resistant P-gp-overexpressing CEM/ADR5000 cells represented similar sensitivity towards MCC1734, indicating MCC1734 can bypass P-gp-mediated resistance. Microarray-based mRNA expression revealed that MCC17…

Cell SurvivalEukaryotic Initiation Factor-2Antineoplastic AgentsMitochondrionBiochemistryFlow cytometryeIF-2 KinaseCell Line TumorOxazinesmedicineHumansCytotoxic T cellGene Regulatory NetworksCytotoxicityPharmacologyMolecular Structuremedicine.diagnostic_testChemistryCell cycleActivating Transcription Factor 4Gene Expression Regulation NeoplasticXanthenesDrug Resistance NeoplasmCell cultureApoptosisCancer cellCancer researchGene DeletionBiochemical Pharmacology
researchProduct

A novel moniliformin derivative as pan-inhibitor of histone deacetylases triggering apoptosis of leukemia cells

2021

New and potent agents that evade multidrug resistance (MDR) and inhibit epigenetic modifications are of great interest in cancer drug development. Here, we describe that a moniliformin derivative (IUPAC name: 3-(naphthalen-2-ylsulfanyl)-4-{[(2Z)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]methyl}cyclobut-3-ene-1,2-dione; code: MCC1381) bypasses P-gp-mediated MDR. Using transcriptomics, we identified a large number of genes significantly regulated in response to MCC1381, which affected the cell cycle and disturbed cellular death and survival. The potential targets of MCC1381 might be histone deacetylases (HDACs) as predicted by SwissTargetPrediction. In silico studies confirmed that MCC13…

Cell SurvivalApoptosisBiochemistryHistone DeacetylasesProtein Structure SecondaryAnimalsHumansEpigeneticsZebrafishP-glycoproteinPharmacologyLeukemiaDose-Response Relationship DrugbiologyChemistryMycotoxinsCell cycleHDAC6HCT116 CellsXenograft Model Antitumor AssaysProtein Structure TertiaryCell biologyHistone Deacetylase InhibitorsMolecular Docking SimulationHEK293 CellsHistoneAcetylationApoptosisCancer cellbiology.proteinCyclobutanesBiochemical Pharmacology
researchProduct

Repurposing of artemisinin-type drugs for the treatment of acute leukemia.

2020

Cancer treatment represents an unmet challenge due to the development of drug resistance and severe side effects of chemotherapy. Artemisinin (ARS)-type compounds exhibit excellent antimalarial effects with few side effects and drug-resistance. ARS and its derivatives were also reported to act against various tumor types in vitro and in vivo, including acute leukemia. Therefore, ARS-type compounds may be exquisitely suitable for repurposing in leukemia treatment. To provide comprehensive clues of ARS and its derivatives for acute leukemia treatment, their molecular mechanisms are discussed in this review. Five monomeric molecules and 72 dimers, trimers and hybrids based on the ARS scaffold …

0301 basic medicineCancer Researchmedicine.medical_treatmentAntineoplastic AgentsDrug resistancePharmacology03 medical and health sciencesAntimalarials0302 clinical medicineIn vivoNeoplasmsDrug DiscoverymedicineAnimalsHumansArtemisininRepurposingChemotherapyAcute leukemiabusiness.industryDrug Repositioningmedicine.diseaseIn vitroArtemisininsLeukemia030104 developmental biology030220 oncology & carcinogenesisbusinessmedicine.drugSeminars in cancer biology
researchProduct

Cytotoxicity and antimitotic activity of Rhinella schneideri and Rhinella marina venoms.

2019

Abstract Ethnopharmacological relevance Rhinella schneideri and Rhinella marina are toad venoms distributed in different parts of the world, including Brazil, Columbia and amazon. Venoms extracted from different species have many clinical applications such as antimicrobial cardiotonics and treatment of cancer. Aim of the study; In this study, we aim to investigate the effect of venoms extracted from R. schneideri and R. marina on cancer cells and verify possible mechanism of action. Material and method Cytotoxicity analyses was performed using the resazurin reduction assay, where different concentrations of venoms were tested against sensitive CCRF-CEM and P-gp overexpressing ADR/CEM5000 le…

Programmed cell deathCell SurvivalAntimitotic AgentsLethal Dose 5003 medical and health scienceschemistry.chemical_compound0302 clinical medicineTubulinRhinella schneideriCell Line TumorDrug DiscoveryAnimalsHumansPropidium iodideCytotoxicity030304 developmental biologyPharmacology0303 health sciencesbiologyBufalinCell Cycle Checkpointsbiology.organism_classificationBufonidaeMolecular Docking SimulationTubulinchemistryBiochemistryApoptosis030220 oncology & carcinogenesisCancer cellbiology.proteinAmphibian VenomsJournal of ethnopharmacology
researchProduct

Chemopreventive Property of Sencha Tea Extracts towards Sensitive and Multidrug-Resistant Leukemia and Multiple Myeloma Cells

2020

The popular beverage green tea possesses chemopreventive activity against various types of tumors. However, the effects of its chemopreventive effect on hematological malignancies have not been defined. In the present study, we evaluated antitumor efficacies of a specific green tea, sencha tea, on sensitive and multidrug-resistant leukemia and a panel of nine multiple myelomas (MM) cell lines. We found that sencha extracts induced cytotoxicity in leukemic cells and MM cells to different extents, yet its effect on normal cells was limited. Furthermore, sencha extracts caused G2/M and G0/G1 phase arrest during cell cycle progression in CCRF/CEM and KMS-12-BM cells, respectively. Specifically,…

0301 basic medicineCell Survivalnatural productsgreen tealcsh:QR1-502Cell morphologychemotherapyBiochemistryArticlelcsh:Microbiologyfunctional foodPhosphatidylinositol 3-Kinases03 medical and health sciences0302 clinical medicineCell Line TumorHumansCytotoxicityMolecular BiologyProtein kinase BcatechinsPI3K/AKT/mTOR pathwaypolyphenolsCell ProliferationMembrane Potential MitochondrialLeukemiadrug resistanceTeaPlant ExtractsChemistryCell growthCell CycleNF-kappa BCell cycleAntineoplastic Agents PhytogenicDrug Resistance MultipleGene Expression Regulation Neoplastic030104 developmental biologyDrug Resistance NeoplasmApoptosisCell culture030220 oncology & carcinogenesisflavonoidsCancer researchmicroarray analysisMultiple MyelomaReactive Oxygen SpeciesProto-Oncogene Proteins c-aktSignal TransductionBiomolecules
researchProduct