0000000000397007

AUTHOR

Oliver H. Krämer

showing 9 related works from this author

Important role of Nfkb2 in the KrasG12D-driven carcinogenesis in the pancreas

2021

Abstract Background Oncogenic Kras initiates and drives carcinogenesis in the pancreas by complex signaling networks, including activation of the NFκB pathway. Although recent evidence has shown that oncogenic gains in Nfκb2 collaborate with Kras in the carcinogenesis, no data at the level of genetics for the contribution of Nfκb2 is available so far. Methods We used Nfkb2 knock-out mice to decipher the role of the gene in Kras-driven carcinogenesis in vivo. Results We show that the Nfkb2 gene is needed for cancer initiation and progression in KrasG12D-driven models and this requirement of Nfkb2 is mechanistically connected to proliferative pathways. In contrast, Nfκb2 is dispensable in agg…

Endocrinology Diabetes and Metabolismmedicine.disease_causelaw.invention03 medical and health sciences0302 clinical medicinelawPancreatic cancermedicineGeneHepatologyOncogenebusiness.industryGastroenterologyCancermedicine.diseasedigestive system diseasesddc:medicine.anatomical_structure030220 oncology & carcinogenesisCancer researchSuppressor030211 gastroenterology & hepatologyKRASCarcinogenesisbusinessPancreas
researchProduct

Abstract 3100: Replacing fetal calf serum by human platelet lysate in cancer research and toxicology

2018

Abstract Experiments with cultured mammalian cells represent a common in vitro alternative to animal experiments. Fetal calf serum (FCS) is the most commonly used medium supplement. FCS contains a mixture of largely undefined growth factors and cytokines. Since FCS is received from unborn calves older than three months, it represents a massive burden for the pregnant cows and their fetuses. A needle is inserted into the heart of the fetus to collect blood. Since the animal is not under anesthesia, it may suffer pain and discomfort. Furthermore, the undefined nature of FCS is a source of experimental variation, undesired immune responses, and possible contaminations. Thus, alternative, defin…

Cancer ResearchFetusmedicine.diagnostic_testCell growthCancerCell cycleBiologyCell morphologymedicine.diseaseFlow cytometryToxicologyImmune systemOncologyCell cultureCancer researchmedicineCancer Research
researchProduct

MTOR inhibitor-based combination therapies for pancreatic cancer

2018

Background: Although the mechanistic target of rapamycin (MTOR) kinase, included in the mTORC1 and mTORC2 signalling hubs, has been demonstrated to be active in a significant fraction of patients with pancreatic ductal adenocarcinoma (PDAC), the value of the kinase as a therapeutic target needs further clarification. Methods: We used Mtor floxed mice to analyse the function of the kinase in context of the pancreas at the genetic level. Using a dual-recombinase system, which is based on the flippase-FRT (Flp-FRT) and Cre-loxP recombination technologies, we generated a novel cellular model, allowing the genetic analysis of MTOR functions in tumour maintenance. Cross-species validation and pha…

therapeutic resistance0301 basic medicineCancer ResearchCell SurvivalMAP Kinase Signaling Systempancreatic cancerAntineoplastic AgentsContext (language use)Mechanistic Target of Rapamycin Complex 2mTORC1Mechanistic Target of Rapamycin Complex 1BiologymTORC2BortezomibMice03 medical and health sciencesCell Line TumorPancreatic cancermedicineAnimalsHumansExtracellular Signal-Regulated MAP KinasesMechanistic target of rapamycinPI3K/AKT/mTOR pathwayBenzoxazolesKinaseMTORTOR Serine-Threonine Kinasesmedicine.diseaseddc:3. Good healthPancreatic NeoplasmsPyrimidines030104 developmental biologyOncologybiology.proteinCancer researchCamptothecinTOR Serine-Threonine KinasesPhosphatidylinositol 3-KinaseTranslational TherapeuticsProto-Oncogene Proteins c-aktBiologieCarcinoma Pancreatic Ductal
researchProduct

HDAC1 and HDAC2 integrate the expression of p53 mutants in pancreatic cancer.

2015

Mutation of p53 is a frequent genetic lesion in pancreatic cancer being an unmet clinical challenge. Mutants of p53 have lost the tumour-suppressive functions of wild type p53. In addition, p53 mutants exert tumour-promoting functions, qualifying them as important therapeutic targets. Here, we show that the class I histone deacetylases HDAC1 and HDAC2 contribute to maintain the expression of p53 mutants in human and genetically defined murine pancreatic cancer cells. Our data reveal that the inhibition of these HDACs with small molecule HDAC inhibitors (HDACi), as well as the specific genetic elimination of HDAC1 and HDAC2, reduce the expression of mutant p53 mRNA and protein levels. We fur…

0301 basic medicineCancer ResearchProteasome Endopeptidase ComplexMutantHistone Deacetylase 2Histone Deacetylase 1Biologymedicine.disease_causeMolecular oncologyProto-Oncogene Proteins c-myc03 medical and health sciencesMicePancreatic cancerGeneticsmedicineAnimalsHumansRNA MessengerPromoter Regions GeneticMolecular BiologyRegulation of gene expressionMice KnockoutMutationWild typeCancerProto-Oncogene Proteins c-mdm2medicine.diseaseGenes p53HDAC13. Good healthGene Expression Regulation NeoplasticHistone Deacetylase InhibitorsPancreatic NeoplasmsDisease Models Animal030104 developmental biologyMutationCancer researchOncogene
researchProduct

Concepts to Target MYC in Pancreatic Cancer.

2016

Abstract Current data suggest that MYC is an important signaling hub and driver in pancreatic ductal adenocarcinoma (PDAC), a tumor entity with a strikingly poor prognosis. No targeted therapies with a meaningful clinical impact were successfully developed against PDAC so far. This points to the need to establish novel concepts targeting the relevant drivers of PDAC, like KRAS or MYC. Here, we discuss recent developments of direct or indirect MYC inhibitors and their potential mode of action in PDAC. Mol Cancer Ther; 15(8); 1792–8. ©2016 AACR.

0301 basic medicineCancer ResearchPoor prognosisPancreatic ductal adenocarcinomaendocrine system diseasesGene regulatory networkAntineoplastic AgentsBiologymedicine.disease_causeBioinformaticsProto-Oncogene Proteins c-myc03 medical and health sciencesPancreatic cancerCarcinomamedicineAnimalsHumansGene Regulatory NetworksMolecular Targeted TherapyProtein Kinase InhibitorsCancerGenetic Variationmedicine.diseasedigestive system diseasesGene Expression Regulation NeoplasticPancreatic Neoplasms030104 developmental biologyOncologyCarrier proteinCancer researchKRASCarrier ProteinsCarcinoma Pancreatic DuctalProtein BindingSignal TransductionMolecular cancer therapeutics
researchProduct

Class I histone deacetylases regulate p53/NF-κB crosstalk in cancer cells

2016

The transcription factors NF-κB and p53 as well as their crosstalk determine the fate of tumor cells upon therapeutic interventions. Replicative stress and cytokines promote signaling cascades that lead to the co-regulation of p53 and NF-κB. Consequently, nuclear p53/NF-κB signaling complexes activate NF-κB-dependent survival genes. The 18 histone deacetylases (HDACs) are epigenetic modulators that fall into four classes (I-IV). Inhibitors of histone deacetylases (HDACi) become increasingly appreciated as anti-cancer agents. Based on their effects on p53 and NF-κB, we addressed whether clinically relevant HDACi affect the NF-κB/p53 crosstalk. The chemotherapeutics hydroxyurea, etoposide, an…

0301 basic medicineDNA damageApoptosisModels BiologicalHistone Deacetylases03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCell Line TumorNeoplasmsHumansHydroxyureaEpigeneticsTranscription factorCellular SenescenceEtoposidebiologyNF-kappa BNF-κBCell Cycle CheckpointsDNA NeoplasmCell BiologyHDAC6Gene Expression Regulation NeoplasticHistone Deacetylase InhibitorsCrosstalk (biology)030104 developmental biologyHistonechemistry030220 oncology & carcinogenesisMutationCancer cellbiology.proteinCancer researchTumor Suppressor Protein p53VidarabineDNA DamageSignal TransductionCellular Signalling
researchProduct

A p300 and SIRT1 Regulated Acetylation Switch of C/EBPP Controls Mitochondrial Function

2018

Cellular metabolism is a tightly controlled process in which the cell adapts fluxes through metabolic pathways in response to changes in nutrient supply. Among the transcription factors that regulate gene expression and thereby cause changes in cellular metabolism is the basic leucine-zipper (bZIP) transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα). Protein lysine acetylation is a key post-translational modification (PTM) that integrates cellular metabolic cues with other physiological processes. Here we show that C/EBPα is acetylated by the lysine acetyl transferase (KAT) p300 and deacetylated by the lysine deacetylase (KDAC) Sirtuin1 (SIRT1). SIRT1 is activated in times of…

chemistry.chemical_compoundMitochondrial biogenesischemistryTranscription (biology)AcetylationGene expressionLysineNAD+ kinaseNicotinamide adenine dinucleotideTranscription factorCell biologySSRN Electronic Journal
researchProduct

Class 1 Histone Deacetylases and Ataxia-Telangiectasia Mutated Kinase Control the Survival of Murine Pancreatic Cancer Cells upon dNTP Depletion

2021

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with a dismal prognosis. Here, we show how an inhibition of de novo dNTP synthesis by the ribonucleotide reductase (RNR) inhibitor hydroxyurea and an inhibition of epigenetic modifiers of the histone deacetylase (HDAC) family affect short-term cultured primary murine PDAC cells. We used clinically relevant doses of hydroxyurea and the class 1 HDAC inhibitor entinostat. We analyzed the cells by flow cytometry and immunoblot. Regarding the induction of apoptosis and DNA replication stress, hydroxyurea and the novel RNR inhibitor COH29 are superior to the topoisomerase-1 inhibitor irinotecan which is used to treat PDAC. Ent…

DNA Replicationendocrine system diseasesDNA damagereplication stressQH301-705.5RNR Inhibitor COH29Antineoplastic AgentsCell Cycle ProteinsRNRAtaxia Telangiectasia Mutated ProteinsArticle03 medical and health scienceschemistry.chemical_compoundAtaxia TelangiectasiaMice0302 clinical medicineHDACAnimalscancerPDAC cellsRibonucleotide Reductase SubunitEnzyme InhibitorsBiology (General)030304 developmental biology0303 health sciencesbiologyChemistryEntinostatDNA replicationapoptosisGeneral Medicine3. Good healthPancreatic NeoplasmsHistoneRibonucleotide reductase030220 oncology & carcinogenesisATMbiology.proteinCancer researchDNA damageHistone deacetylaseCells
researchProduct

MYC and EGR1 synergize to trigger tumor cell death by controlling NOXA and BIM transcription upon treatment with the proteasome inhibitor bortezomib

2014

The c-MYC (MYC afterward) oncogene is well known for driving numerous oncogenic programs. However, MYC can also induce apoptosis and this function of MYC warrants further clarification. We report here that a clinically relevant proteasome inhibitor significantly increases MYC protein levels and that endogenous MYC is necessary for the induction of apoptosis. This kind of MYC-induced cell death is mediated by enhanced expression of the pro-apoptotic BCL2 family members NOXA and BIM. Quantitative promoter-scanning chromatin immunoprecipitations (qChIP) further revealed binding of MYC to the promoters of NOXA and BIM upon proteasome inhibition, correlating with increased transcription. Both pr…

Programmed cell deathTranscription GeneticEGR1ApoptosisBiologyBortezomibProto-Oncogene Proteins c-mycMicehemic and lymphatic diseasesCell Line TumorProto-Oncogene ProteinsGeneticsmedicineAnimalsPromoter Regions GeneticTranscription factorCells CulturedEarly Growth Response Protein 1Zinc finger transcription factorBinding SitesOncogeneBcl-2-Like Protein 11Genes p16Gene regulation Chromatin and EpigeneticsMembrane ProteinsPromoterGenes p53Boronic AcidsChromatinddc:Gene Expression Regulation NeoplasticProto-Oncogene Proteins c-bcl-2PyrazinesCancer researchProteasome inhibitorApoptosis Regulatory ProteinsProteasome Inhibitorsmedicine.drug
researchProduct