0000000000398457

AUTHOR

David Demille

showing 3 related works from this author

STUDIES OF WIRE GAIN AND TRACK DISTORTION NEAR THE SECTOR EDGES OF THE ALEPH TIME PROJECTION CHAMBER

1986

Abstract The materials used to hold the wires at the sector edges in a large Time Projection Chamber (TPC) inrtoduce distortions of the electric drift field near those edges. These distortions degrade tracking information and sometimes cause large changes in wire gain near the edge. We have studied these two problems for the ALEPH TPC and have found that both can be greatly reduced by the addition of two field correction strips held at appropriate voltages.

PhysicsNuclear and High Energy PhysicsTime projection chamberField (physics)business.industryTrack (disk drive)STRIPSEdge (geometry)Tracking (particle physics)law.inventionOpticslawDistortionbusinessInstrumentationVoltage
researchProduct

Search for New Physics with Atoms and Molecules

2017

This article reviews recent developments in tests of fundamental physics using atoms and molecules, including the subjects of parity violation, searches for permanent electric dipole moments, tests of the CPT theorem and Lorentz symmetry, searches for spatiotemporal variation of fundamental constants, tests of quantum electrodynamics, tests of general relativity and the equivalence principle, searches for dark matter, dark energy and extra forces, and tests of the spin-statistics theorem. Key results are presented in the context of potential new physics and in the broader context of similar investigations in other fields. Ongoing and future experiments of the next decade are discussed.

Condensed Matter::Quantum GasesPhysicsAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsGeneral relativityOrders of magnitude (temperature)Physics beyond the Standard ModelAtoms in moleculesDark matterFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesMetrologyPhysics - Atomic PhysicsTheoretical physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Quantum mechanics0103 physical sciencesAtomPhysics::Atomic PhysicsEquivalence principle010306 general physics
researchProduct

Opportunities for Fundamental Physics Research with Radioactive Molecules

2023

Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, mo…

Nuclear Theory (nucl-th)nucl-thNuclear TheoryAtomic Physics (physics.atom-ph)Nuclear Physics - TheoryOther Fields of PhysicsFOS: Physical sciencesNuclear Physics - ExperimentNuclear Experiment (nucl-ex)nucl-exphysics.atom-phNuclear ExperimentPhysics - Atomic Physics
researchProduct