0000000000400779

AUTHOR

Claudia Bühnemann

showing 1 related works from this author

Quantification of the heterogeneity of prognostic cellular biomarkers in ewing sarcoma using automated image and random survival forest analysis

2014

Driven by genomic somatic variation, tumour tissues are typically heterogeneous, yet unbiased quantitative methods are rarely used to analyse heterogeneity at the protein level. Motivated by this problem, we developed automated image segmentation of images of multiple biomarkers in Ewing sarcoma to generate distributions of biomarkers between and within tumour cells. We further integrate high dimensional data with patient clinical outcomes utilising random survival forest (RSF) machine learning. Using material from cohorts of genetically diagnosed Ewing sarcoma with EWSR1 chromosomal translocations, confocal images of tissue microarrays were segmented with level sets and watershed algorithm…

PathologyCytoplasmMicroarrayslcsh:MedicineCohort StudiesMedicine and Health Scienceslcsh:ScienceMultidisciplinaryTissue microarrayApplied MathematicsPrognosisRandom forestBioassays and Physiological AnalysisOncologyFeature (computer vision)Research DesignPhysical SciencesBiomarker (medicine)SarcomaAnatomyAlgorithmsStatistics (Mathematics)Research Articlemedicine.medical_specialtyComputer and Information SciencesHistologyClinical Research DesignCD99Feature selectionBone NeoplasmsComputational biologySarcoma EwingBiology12E7 AntigenResearch and Analysis MethodsAntigens CDArtificial IntelligenceCell Line TumormedicineCancer Detection and DiagnosisBiomarkers TumorHumansStatistical MethodsCell Nucleuslcsh:RBiology and Life SciencesComputational BiologyImage segmentationmedicine.diseaselcsh:QCell Adhesion MoleculesMathematicsPLoS ONE
researchProduct