0000000000402225
AUTHOR
Nicola Zampa
The Large Area Detector onboard the eXTP mission
The Large Area Detector (LAD) is the high-throughput, spectral-timing instrument onboard the eXTP mission, a flagship mission of the Chinese Academy of Sciences and the China National Space Administration, with a large European participation coordinated by Italy and Spain. The eXTP mission is currently performing its phase B study, with a target launch at the end-2027. The eXTP scientific payload includes four instruments (SFA, PFA, LAD and WFM) offering unprecedented simultaneous wide-band X-ray timing and polarimetry sensitivity. The LAD instrument is based on the design originally proposed for the LOFT mission. It envisages a deployed 3.2 m2 effective area in the 2-30 keV energy range, a…
The HERMES-Technologic and Scientific Pathfinder
HERMES-TP/SP (High Energy Rapid Modular Ensemble of Satellites Technologic and Scientific Pathfinder) is a constellation of six 3U nano-satellites hosting simple but innovative X-ray detectors, characterized by a large energy band and excellent temporal resolution, and thus optimized for the monitoring of Cosmic High Energy transients such as Gamma Ray Bursts and the electromagnetic counterparts of Gravitational Wave Events, and for the determination of their positions. The projects are funded by the Italian Ministry of University and Research and by the Italian Space Agency, and by the European Union Horizon 2020 Research and Innovation Program under Grant Agreement No. 821896. HERMES-TP/S…
Timing techniques applied to distributed modular high-energy astronomy: the H.E.R.M.E.S. project
The HERMES-TP/SP (High Energy Rapid Modular Ensemble of Satellites -- Technologic and Scientific Pathfinder) is an in-orbit demonstration of the so-called distributed astronomy concept. Conceived as a mini-constellation of six 3U nano-satellites hosting a new miniaturized detector, HERMES-TP/SP aims at the detection and accurate localisation of bright high-energy transients such as Gamma-Ray Bursts. The large energy band, the excellent temporal resolution and the wide field of view that characterize the detectors of the constellation represent the key features for the next generation high-energy all-sky monitor with good localisation capabilities that will play a pivotal role in the future …
The scientific payload on-board the HERMES-TP and HERMES-SP CubeSat missions
HERMES (High Energy Rapid Modular Ensemble of Satellites) Technological and Scientific pathfinder is a space borne mission based on a LEO constellation of nano-satellites. The 3U CubeSat buses host new miniaturized detectors to probe the temporal emission of bright high-energy transients such as Gamma-Ray Bursts (GRBs). Fast transient localization, in a field of view of several steradians and with arcmin-level accuracy, is gained by comparing time delays among the same event detection epochs occurred on at least 3 nano-satellites. With a launch date in 2022, HERMES transient monitoring represents a keystone capability to complement the next generation of gravitational wave experiments. In t…
The enhanced X-ray Timing and Polarimetry mission—eXTP
In this paper we present the enhanced X-ray Timing and Polarimetry mission - eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to det…