0000000000403095

AUTHOR

Yuandong Chan

Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters

Computing alignments between two or more sequences are common operations frequently performed in computational molecular biology. The continuing growth of biological sequence databases establishes the need for their efficient parallel implementation on modern accelerators. This paper presents new approaches to high performance biological sequence database scanning with the Smith-Waterman algorithm and the first stage of progressive multiple sequence alignment based on the ClustalW heuristic on a Xeon Phi-based compute cluster. Our approach uses a three-level parallelization scheme to take full advantage of the compute power available on this type of architecture; i.e. cluster-level data par…

research product

XLCS: A New Bit-Parallel Longest Common Subsequence Algorithm on Xeon Phi Clusters

Finding the longest common subsequence (LCS) of two strings is a classical problem in bioinformatics. A basic approach to solve this problem is based on dynamic programming. As the biological sequence databases are growing continuously, bit-parallel sequence comparison algorithms are becoming increasingly important. In this paper, we present XLCS, a new parallel implementation to accelerate the LCS algorithm on Xeon Phi clusters by performing bit-wise operations. We have designed an asynchronous IO framework to improve the data transfer efficiency. To make full use of the computing resources of Xeon Phi clusters, we use three levels of parallelism: node-level, thread-level and vector-level.…

research product

BGSA: a bit-parallel global sequence alignment toolkit for multi-core and many-core architectures

Abstract Motivation Modern bioinformatics tools for analyzing large-scale NGS datasets often need to include fast implementations of core sequence alignment algorithms in order to achieve reasonable execution times. We address this need by presenting the BGSA toolkit for optimized implementations of popular bit-parallel global pairwise alignment algorithms on modern microprocessors. Results BGSA outperforms Edlib, SeqAn and BitPAl for pairwise edit distance computations and Parasail, SeqAn and BitPAl when using more general scoring schemes for pairwise alignments of a batch of sequence reads on both standard multi-core CPUs and Xeon Phi many-core CPUs. Furthermore, banded edit distance perf…

research product

S-Aligner: Ultrascalable Read Mapping on Sunway Taihu Light

The availability and amount of sequenced genomes have been rapidly growing in recent years because of the adoption of next-generation sequencing (NGS) technologies that enable high-throughput short-read generation at highly competitive cost. Since this trend is expected to continue in the foreseeable future, the design and implementation of efficient and scalable NGS bioinformatics algorithms are important to research and industrial applications. In this paper, we introduce S-Aligner–a highly scalable read mapper designed for the Sunway Taihu Light supercomputer and its fourth-generationShenWei many-core architecture (SW26010). S-Aligner employs a combination of optimization techniques to o…

research product

PUNAS: A Parallel Ungapped-Alignment-Featured Seed Verification Algorithm for Next-Generation Sequencing Read Alignment

The progress of next-generation sequencing has a major impact on medical and genomic research. This technology can now produce billions of short DNA fragments (reads) in a single run. One of the most demanding computational problems used by almost every sequencing pipeline is short-read alignment; i.e. determining where each fragment originated from in the original genome. Most current solutions are based on a seed-and-extend approach, where promising candidate regions (seeds) are first identified and subsequently extended in order to verify whether a full high-scoring alignment actually exists in the vicinity of each seed. Seed verification is the main bottleneck in many state-of-the-art a…

research product

SPECTR

Modern high throughput sequencing platforms can produce large amounts of short read DNA data at low cost. Error correction is an important but time-consuming initial step when processing this data in order to improve the quality of downstream analyses. In this paper, we present a Scalable Parallel Error CorrecToR designed to improve the throughput of DNA error correction for Illumina reads on various parallel platforms. Our design is based on a k-spectrum approach where a Bloom filter is frequently probed as a key operation and is optimized towards AVX-512-based multi-core CPUs, Xeon Phi many-cores (both KNC and KNL), and heterogeneous compute clusters. A number of architecture-specific opt…

research product