0000000000403844

AUTHOR

Christian Trapp

The basal levels of 8-oxoG and other oxidative modifications in intact mitochondrial DNA are low even in repair-deficient (Ogg1(-/-)/Csb(-/-)) mice.

Abstract Mitochondrial DNA (mtDNA) is assumed to be highly prone to damage by reactive oxygen species (ROS) because of its location in close proximity to the mitochondrial electron transport chain. Accordingly, mitochondrial oxidative DNA damage has been hypothesized to be responsible for various neurological diseases, ageing and cancer. Since 7,8-dihydro-8-oxoguanine (8-oxoG), one of the most frequent oxidative base modifications, is removed from the mitochondrial genome by the glycosylase OGG1, the basal levels of this lesion are expected to be highly elevated in Ogg1−/− mice. To investigate this hypothesis, we have used a mtDNA relaxation assay in combination with various repair enzymes …

research product

The Peroxisome Proliferator WY-14,643 Promotes Hepatocarcinogenesis Caused by Endogenously Generated Oxidative DNA Base Modifications in Repair-Deficient Csbm/m/Ogg1−/− Mice

Abstract Basal levels of endogenously generated oxidative DNA modifications such as 7,8-dihydro-8-oxoguanine (8-oxoG) are present in apparently all mammalian cells, but their relevance for the generation of spontaneous cancers remains to be established. Both the 8-oxoG levels and the resulting spontaneous mutations are increased in the livers of Csbm/m/Ogg1−/− mice, which are deficient in the repair of 8-oxoG. In order to determine the consequences of these additional oxidative DNA modifications and mutations and thus assess the tumor initiating potency of this type of endogenous DNA damage, we treated Csbm/m/Ogg1−/− mice and repair-proficient controls with the peroxisome proliferator WY-14…

research product