Heavy quark decomposition of the S matrix and its relation to the pinch technique.
We propose a decomposition of the S-matrix into individually gauge invariant sub-amplitudes, which are kinematically akin to propagators, vertices, boxes, etc. This decompsition is obtained by considering limits of the S-matrix when some or all of the external particles have masses larger than any other physical scale. We show at the one-loop level that the effective gluon self-energy so defined is physically equivalent to the corresponding gauge independent self-energy obtained in the framework of the pinch technique. The generalization of this procedure to arbitrary gluonic $n$-point functions is briefly discussed.