0000000000405056

AUTHOR

Ding Yuan

showing 2 related works from this author

Quasi-Periodic Pulsations in Solar and Stellar Flares: A Review of Underpinning Physical Mechanisms and Their Predicted Observational Signatures

2021

The phenomenon of quasi-periodic pulsations (QPPs) in solar and stellar flares has been known for over 50 years and significant progress has been made in this research area. It has become clear that QPPs are not rare—they are found in many flares and, therefore, robust flare models should reproduce their properties in a natural way. At least fifteen mechanisms/models have been developed to explain QPPs in solar flares, which mainly assume the presence of magnetohydrodynamic (MHD) oscillations in coronal structures (magnetic loops and current sheets) or quasi-periodic regimes of magnetic reconnection. We review the most important and interesting results on flare QPPs, with an emphasis on the…

MHD wavesMHD oscillationsF300Astrophysics::High Energy Astrophysical PhenomenaF500Astrophysicslaw.inventionQuasi-periodic pulsations (QPPs)lawAstrophysics::Solar and Stellar AstrophysicsPhysicsSolar flareAstronomy and AstrophysicsMagnetic reconnectionStellar flaresStarsPlanetary scienceSpace and Planetary ScienceSolar flaresPhysics::Space PhysicsMagnetic reconnectionObservational studyAstrophysics::Earth and Planetary AstrophysicsQuasi periodicMagnetohydrodynamicsFlare
researchProduct

Slow-Mode Magnetoacoustic Waves in Coronal Loops

2021

Rapidly decaying long-period oscillations often occur in hot coronal loops of active regions associated with small (or micro-) flares. This kind of wave activity was first discovered with the SOHO/SUMER spectrometer from Doppler velocity measurements of hot emission lines, thus also often called "SUMER" oscillations. They were mainly interpreted as global (or fundamental mode) standing slow magnetoacoustic waves. In addition, increasing evidence has suggested that the decaying harmonic type of pulsations detected in light curves of solar and stellar flares are likely caused by standing slow-mode waves. The study of slow magnetoacoustic waves in coronal loops has become a topic of particular…

010504 meteorology & atmospheric sciencesSolar activityFOS: Physical sciencesSolar corona01 natural sciencesStanding wave0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsEmission spectrum010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesCoronal seismologyPhysicsOscillationOscillations and wavesAstronomy and AstrophysicsCoronal loopLight curveThermal conductionCoronal loopsComputational physicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsMagnetohydrodynamics
researchProduct