0000000000406301

AUTHOR

Quan Long

0000-0002-9631-1457

showing 2 related works from this author

Developments in numerical modelling of cardiovascular fluid dynamics

1998

numerical simulationCardiovascular flowarterial flowCFDSettore BIO/09 - FisiologiaSettore ING-IND/19 - Impianti Nucleari
researchProduct

Nucleocytoplasmic transport of the RNA-binding protein CELF2 regulates neural stem cell fates.

2020

The development of the cerebral cortex requires balanced expansion and differentiation of neural stem/progenitor cells (NPCs), which rely on precise regulation of gene expression. Because NPCs often exhibit transcriptional priming of cell-fate-determination genes, the ultimate output of these genes for fate decisions must be carefully controlled in a timely fashion at the post-transcriptional level, but how that is achieved is poorly understood. Here, we report that de novo missense variants in an RNA-binding protein CELF2 cause human cortical malformations and perturb NPC fate decisions in mice by disrupting CELF2 nucleocytoplasmic transport. In self-renewing NPCs, CELF2 resides in the cyt…

0301 basic medicineRegulation of gene expressionNeurogenesisRNA-Binding ProteinsTranslation (biology)RNA-binding proteinCell DifferentiationNerve Tissue ProteinsBiologyCell fate determinationGeneral Biochemistry Genetics and Molecular BiologyNeural stem cellCell biology03 medical and health sciences030104 developmental biology0302 clinical medicineNeural Stem CellsNucleocytoplasmic TransportCELF ProteinsHumansProgenitor cell030217 neurology & neurosurgeryCell reports
researchProduct