0000000000407246

AUTHOR

A. Pastore

showing 12 related works from this author

Updated determination of D0–D¯0 mixing and CP violation parameters with D0→K+π− decays

2018

We report measurements of charm-mixing parameters based on the decay-time-dependent ratio of D0→K+π- to D0→K-π+ rates. The analysis uses a data sample of proton-proton collisions corresponding to an integrated luminosity of 5.0  fb-1 recorded by the LHCb experiment from 2011 through 2016. Assuming charge-parity (CP) symmetry, the mixing parameters are determined to be x′2=(3.9±2.7)×10-5, y′=(5.28±0.52)×10-3, and RD=(3.454±0.031)×10-3. Without this assumption, the measurement is performed separately for D0 and D¯0 mesons, yielding a direct CP-violating asymmetry AD=(-0.1±9.1)×10-3, and magnitude of the ratio of mixing parameters 1.00<|q/p|<1.35 at the 68.3% confidence level. All results incl…

PhysicsParticle physicsLuminosity (scattering theory)Meson010308 nuclear & particles physicsmedia_common.quotation_subject01 natural sciencesAsymmetrySymmetry (physics)0103 physical sciencesCP violationCharm (quantum number)010306 general physicsMixing (physics)Bar (unit)media_commonPhysical Review D
researchProduct

Observation of charmless baryonic decays B(s)0→pp¯h+h′−

2017

Decays of B0 and Bs0 mesons to the charmless baryonic final states pp¯h+h′-, where h and h′ each denote a kaon or a pion, are searched for using the LHCb detector. The analysis is based on a sample of proton-proton collision data collected at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3  fb-1. Four-body charmless baryonic Bs0 decays are observed for the first time. The decays Bs0→pp¯K+K-, Bs0→pp¯K±π∓, B0→pp¯K±π∓ and B0→pp¯π+π- are observed with a significance greater than 5 standard deviations; evidence at 4.1 standard deviations is found for the B0→pp¯K+K- decay and an upper limit is set on the branching fraction for Bs0→pp¯π+π-. Branching fraction…

Nuclear physicsBaryonPhysicsPionMeson010308 nuclear & particles physicsBranching fraction0103 physical sciences010306 general physics01 natural sciencesPhysical Review D
researchProduct

Search for Structure in theBs0π±Invariant Mass Spectrum

2016

The $B_s^0\pi^\pm$ invariant mass distribution is investigated in order to search for possible exotic meson states. The analysis is based on a data sample recorded with the LHCb detector corresponding to $3$ fb$^{-1}$ of $pp$ collision data at $\sqrt{s} = 7$ and $8$ TeV. No significant excess is found, and upper limits are set on the production rate of the claimed $X(5568)$ state. Upper limits are also set as a function of the mass and width of a possible exotic meson decaying to the $B_s^0\pi^\pm$ final state.

PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsHigh Energy Physics::PhenomenologySpectrum (functional analysis)General Physics and AstronomyOrder (ring theory)Function (mathematics)State (functional analysis)01 natural sciencesNuclear physicsDistribution (mathematics)0103 physical sciencesHigh Energy Physics::ExperimentInvariant massExotic meson010306 general physicsPhysical Review Letters
researchProduct

First experimental study of photon polarization in radiative B0s decays.

2017

The polarization of photons produced in radiative $B^{0}_{s}$ decays is studied for the first time. The data are recorded by the LHCb experiment in $pp$ collisions corresponding to an integrated luminosity of 3fb$^{-1}$ at center-of-mass energies of $7$ and $8$TeV. A time-dependent analysis of the $B^{0}_{s} \to \phi \gamma$ decay rate is conducted to determine the parameter ${\mathcal{A}}^\Delta$, which is related to the ratio of right- over left-handed photon polarization amplitudes in $b \to s \gamma$ transitions. A value of ${\mathcal{A}}^\Delta=-0.98^{\,+0.46\,+0.23}_{\,-0.52\,-0.20}$ is measured. This result is consistent with the Standard Model prediction within two standard deviatio…

General PhysicsPhotonModels beyond the standard modeldistributions asymmetries toolPhysics MultidisciplinaryGeneral Physics and AstronomyFOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentSettore FIS/04 - Fisica Nucleare e SubnucleareNONuclear physicsPhysics and Astronomy (all)High Energy Physics - Experiment (hep-ex)ASYMMETRIES0103 physical sciencesPhoton polarizationLeptonic semileptonic and radiative decays of bottom mesonDISTRIBUTIONS; ASYMMETRIES; TOOLRadiative transfer[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]DISTRIBUTIONSTOOLSDG 7 - Affordable and Clean Energy010306 general physicsPhysicsScience & Technology02 Physical Sciences/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyhep-ex010308 nuclear & particles physicsPhysicsParticle physicsPolarization (waves)HEPB physics photon polarization.3. Good healthLHCbAmplitudePhysical SciencesBottom mesons (|B|>0)High Energy Physics::ExperimentLHCFísica de partículesExperimentsPolarization in interactions and scatteringParticle Physics - Experiment
researchProduct

Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks

2019

This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHiP experiment will be able to search for new long-lived particles produced in a 400~GeV$/c$ SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400~GeV$/c$ proton beams with the SHiP target, an otherwise computationally intensive process. For th…

TechnologyPhysics - Instrumentation and DetectorsProtonPhysics::Instrumentation and DetectorsComputer sciencebackground: inducedNuclear TheoryDetector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc); Simulation methods and programs01 natural sciences09 EngineeringHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]muon: momentumDetectors and Experimental TechniquesNuclear Experimentphysics.ins-detGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)InstrumentationInstruments & InstrumentationMathematical PhysicsDetector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc)02 Physical Sciencesinteraction of photons with matterInstrumentation and Detectors (physics.ins-det)p: beammuon: productionDetector modelling and simulations INuclear & Particles Physicsinteraction of hadrons with matterParticle Physics - Experimentperformancedata analysis methodDetector modelling and simulations I (interaction of radiation with matterFOS: Physical sciencesAccelerator Physics and Instrumentation0103 physical sciencesnumerical methodsddc:610[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Aerospace engineering010306 general physicsnumerical calculationsetc)MuonScience & Technologyhep-ex010308 nuclear & particles physicsbusiness.industryNumerical analysisAcceleratorfysik och instrumenteringCERN SPSPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentSimulation methods and programsbusinessGenerative grammar
researchProduct

Measurement of the c0 Baryon Lifetime

2018

We report a measurement of the lifetime of the $��_c^0$ baryon using proton-proton collision data at center-of-mass energies of 7 and 8~TeV, corresponding to an integrated luminosity of 3.0 fb$^{-1}$ collected by the LHCb experiment. The sample consists of about 1000 $��_b^-\to��_c^0��^-\bar��_�� X$ signal decays, where the $��_c^0$ baryon is detected in the $pK^-K^-��^+$ final state and $X$ represents possible additional undetected particles in the decay. The $��_c^0$ lifetime is measured to be $��_{��_c^0} = 268\pm24\pm10\pm2$ fs, where the uncertainties are statistical, systematic, and from the uncertainty in the $D^+$ lifetime, respectively. This value is nearly four times larger than, …

Particles and fieldGeneral PhysicsMesonGeneral Physics and AstronomyFOS: Physical sciences01 natural sciences7. Clean energyOmega09 EngineeringNOLuminosityHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)0103 physical sciencesPhysicHeavy baryonTOOLSDG 7 - Affordable and Clean EnergyLHCb - Abteilung Hinton010306 general physicsINCLUSIVE WEAK DECAYS; DISCARDING 1/N(C); RULE; TOOL01 Mathematical SciencesQuantum chromodynamicsPhysics/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy02 Physical Sciences010308 nuclear & particles physicsQuark modelParticle physicsState (functional analysis)HEPDISCARDING 1/N(C)BaryonLHCbHadron colliderHigh Energy Physics::ExperimentINCLUSIVE WEAK DECAYSLHCAtomic physicsFísica de partículesExperimentsRULECharm physics Oscillation Flavor physics Hadron-Hadron scattering
researchProduct

First study of the CP-violating phase and decay-width difference in Bs0→ψ(2S)ϕ decays

2016

A time-dependent angular analysis of Bs0→ψ(2S)ϕ decays is performed using data recorded by the LHCb experiment. The data set corresponds to an integrated luminosity of 3.0fb−1 collected during Run 1 of the LHC. The CP-violating phase and decay-width difference of the Bs0 system are measured to be ϕs=0.23−0.28+0.29±0.02rad and ΔΓs=0.066−0.044+0.041±0.007ps−1, respectively, where the first uncertainty is statistical and the second systematic. This is the first time that ϕs and ΔΓs have been measured in a decay containing the ψ(2S) resonance.

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron ColliderLuminosity (scattering theory)010308 nuclear & particles physicsPhase (waves)Astrophysics01 natural sciencesResonance (particle physics)Angular distribution0103 physical sciencesCP violation010306 general physicsPhysics Letters B
researchProduct

The experimental facility for the Search for Hidden Particles at the CERN SPS

2019

The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 $\mathrm{\small GeV/c}$ proton beam offers a unique opportunity to explore the Hidden Sector. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived superweakly interacting particles…

TechnologyPhysics - Instrumentation and Detectorsbackground: inducedlarge detector systems for particle and astroparticle physicsSPSbeam transportElectron7. Clean energy01 natural sciences09 Engineeringdark matter detectors (wimps axions etc.)High Energy Physics - Experiment030218 nuclear medicine & medical imaginglaw.inventionNeutrino detectorHigh Energy Physics - Experiment (hep-ex)0302 clinical medicineRecoillawetc.)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino detectorsDetectors and Experimental TechniquesNuclear Experimentphysics.ins-detInstruments & InstrumentationInstrumentationbackground: suppressionMathematical Physicsnucleus: recoilPhysicsRange (particle radiation)tau neutrino02 Physical SciencesLarge Hadron Colliderbeam lossInstrumentation and Detectors (physics.ins-det)p: beamNuclear & Particles Physicsvacuum systemparticle: interactionDark Matter detectors (WIMPbeam opticsNeutrino detectorp: beam dumpPhysics - Instrumentation and Detectorproposed experimentParticle Physics - Experimentzirconium: admixtureFOS: Physical sciencesAccelerator Physics and Instrumentationbeam: ejectionp: targetHidden SectorNuclear physicsKKKK: SHiP03 medical and health sciences0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Beam dumpnumerical calculationsmuon: shieldingdetector: designactivity reportDark Matter detectors (WIMPsScience & Technologyhep-ex010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsbeam-dump facilityAcceleratorfysik och instrumenteringCERN SPSHidden sectoraxionaxions etc.)Large detector systems for particle and astroparticle physicmolybdenum: alloyPhysics::Accelerator Physicstarget: designtitanium: admixtureBeam (structure)neutrino detectors
researchProduct

Measurement of CP asymmetry in Bs0 → Ds ∓K± decays

2014

Journal of high energy physics 2018(3), 59 (2018). doi:10.1007/JHEP03(2018)059

B physicCKM angle gamma01 natural sciencesB physicsLuminosityFlavor physicsHadron-Hadron scattering (experiments)TOOLLHCb - Abteilung HintonQCmedia_commonPhysicsParticle physicsCharge conjugation parity time reversal and other discrete symmetrie12.15.HhB physics; CKM angle gamma; CP violation; Flavor physics; Hadron-Hadron ScatteringJustice and Strong InstitutionsCP violationB physics; CKM angle gamma; CP violation; Flavor physics; Hadron-Hadron Scattering; Nuclear and High Energy PhysicsFísica nuclearLHCAstrophysics::Earth and Planetary AstrophysicsParticle physicsNuclear and High Energy PhysicsVIOLATIONSDG 16 - PeaceVIOLATION; GAMMA; TOOLAstrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subject14.40.NdLHCb - Abteilung HofmannAstrophysics::Cosmology and Extragalactic AstrophysicsHadrons530Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix elementAsymmetryNOHadronic decays of bottom mesonTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530010306 general physicsLarge Hadron Collider (France and Switzerland)Astrophysics::Galaxy AstrophysicsHadron-Hadron Scattering010308 nuclear & particles physicsSDG 16 - Peace Justice and Strong InstitutionsGran Col·lisionador d'HadronsGAMMA/dk/atira/pure/sustainabledevelopmentgoals/peace_justice_and_strong_institutionsHEPLHCbFlavor physic13.25.HwB physics; CKM angle gamma; CP violation; Flavor physics; Hadron-Hadron scattering (experiments)lcsh:QC770-798Bottom mesons (|B|>0)11.30.ErHigh Energy Physics::ExperimentB physics CKM angle gamma CP violation Flavor physics Hadron-Hadron ScatteringFísica de partículesExperiments
researchProduct

Collective vibrational states with fast iterative QRPA method

2012

An iterative method we previously proposed to compute nuclear strength functions is developed to allow it to accurately calculate properties of individual nuclear states. The approach is based on the quasi-particle-random-phase approximation (QRPA) and uses an iterative non-hermitian Arnoldi diagonalization method where the QRPA matrix does not have to be explicitly calculated and stored. The method gives substantial advantages over conventional QRPA calculations with regards to the computational cost. The method is used to calculate excitation energies and decay rates of the lowest lying 2+ and 3- states in Pb, Sn, Ni and Ca isotopes using three different Skyrme interactions and a separabl…

Nuclear Theory (nucl-th)Nuclear TheoryNuclear TheoryFOS: Physical sciencesNuclear Experiment
researchProduct

Adherence issues related to sublingual immunotherapy as perceived by allergists.

2010

Silvia Scurati1, Franco Frati1, Gianni Passalacqua2, Paola Puccinelli1, Cecile Hilaire1, Cristoforo Incorvaia3, Italian Study Group on SLIT Compliance 1Scientific and Medical Department, Stallergenes, Milan, Italy; 2Allergy and Respiratory Diseases, Department of Internal Medicine, Genoa; 3Allergy/Pulmonary Rehabilitation, ICP Hospital, Milan, ItalyObjectives: Sublingual immunotherapy (SLIT) is a viable alternative to subcutaneous immunotherapy to treat allergic rhinitis and asthma, and is widely used in clinical practice in many European countries. The clinical efficacy of SLIT has been established in a number of clinical trials and meta-analyses. However, because SLIT is self-administered…

medicine.medical_specialtyPathologygenetic structuresefficacyAlternative medicineMedicine (miscellaneous)Adherence Cost Efficacy Side effects Sublingual immunotherapySettore MED/10 - Malattie Dell'Apparato Respiratoriosublingual immunotherapyALLERGENcostmedicineSubcutaneous immunotherapySublingual immunotherapyadherenceClinical efficacyIntensive care medicinePharmacology Toxicology and Pharmaceutics (miscellaneous)sublingual immunoterapyOriginal ResearchAsthmaAEROALLERGENSadherence; sublingual immunotherapy; efficacy; cost; side effectsbusiness.industryHealth Policymedicine.diseaseSliteye diseasesClinical trialside effectsPatient Preference and Adherenceadherence; sublingual immunoterapy; efficacy; cost; side effects.immunotherapysense organsAllergistsADHERENCE TO TREATMENTbusinessSocial Sciences (miscellaneous)
researchProduct

Extended Skyrme pseudo-potential deduced from infinite matter properties

2015

We discuss the contributions to the Equation of State for the N$\ell$LO Skyrme pseudo-potential ($\ell$=2,3). We show that by adding 4th and 6th order gradient terms, it is possible to fairly reproduce the spin/isospin decomposition of an equation of state obtained from \emph{ab-initio} methods. Moreover, by inspecting the partial-wave decomposition of the equation of state, we show for the first time a possible way to add explicit constraints on the sign of the tensor terms of the Skyrme interaction.

Nuclear Theory (nucl-th)[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Nuclear TheoryFOS: Physical sciences
researchProduct